Tyrosinase Inhibition and Mutagenicity of Phenolic Compounds from Mulberry Leaves - Research Note -

  • Published : 2007.06.30


The tyrosinase inhibition activity and mutagenicity as assessed by the Ames test on phenolic antioxidants (5-Caffeoyl quinic acid, 3,4-Dihydroxy cinnamic acid, Quercetin 3-O-${\beta}$-D-glucopyranose, Kaempferol 3-O-${\beta}$- D-glucopyranose) and the ethyl acetate fraction isolated from mulberry leaves were examined. The ethyl acetate fraction and chlorogenic acid exhibited weaker tyrosinase inhibitory activities than kojic acid. In addition, the ethyl acetate fraction from mulberry leaves, containing phenolic antioxidants, showed no mutagenicity by the Ames test.


  1. Chen FJ, Nakashima N, Kimura I, Kimura M. 1955. Hypoglycemic activity and mechanism of extracts from mulberry leaves and cortex mori radices in streptozotocin induced diabetic mice. Yakugakuzasshi 115: 476-482
  2. Naitoh K. 1969. Studies on the micro constituent in mulberry leaves; part 2. Isolation of rutin and quercetin from mulberry leaves. Nippon Mogei Kagaku Kaishi 42: 450- 453
  3. Onogi A, Osawa K, Yasuda H, Sakai A, Morita H, Tokawa H. 1993. Flavonol glycosides from the leaves of Morus alba. Shoyakugaku Zasshi 47: 423-425
  4. Kim SY, Gao JJ, Lee WC, Ryu KS, Lee KR, Kim YC. 1999. Antioxidative flavonoids from the leaves of Morus alba. Arch Pharm Res 22: 81-85
  5. Doi K, Kojima T, Makino M, Horiguchi Y, Kimura Y, Fujimoto Y. 2001. Studies on the constituents of the leaves of Morus alba L. Chem Pharm Bull 49: 151-153
  6. Yagi M, Kouno T, Aoyagi Y, Murai H. 1976. The structure of Moraoline, a piperidine alkaloid from Morus species. Nippon Nougei Kagaku Kaishi 50: 571-572
  7. Chen QI, Kubo I. 2002. Kinetics of mushroom tyrosinase inhibition by quercetin. J Agric Food Chem 50: 4108- 4112
  8. Robb DA. 1984. Tyrosinase. In Copper Proteins and Copper Enzyme. Lontie R, ed. CRC Press, Boca Raton, FL. Vol II, p 207-240
  9. Whitaker JR. 1995. Food Enzymes, Structure and Mechanism. Wong DW, ed. Chapman & Hall, New York. p 271-307
  10. Sanchez-Ferrer A, Rodriguez-Lopez JN, Garcia-Canovas F, Garcia-Carmona F. 1995. Tyrosinase; a comprehensive review of its mechanism. Biochim Biophys Acta 1247: 1- 11
  11. Chun HJ, Choi WH, Baek SH, Woo WH. 2002. Effect of quercetin on melanogenesis in melan-a melanocyte cells. Kor J Pharmacogn 33: 245-251
  12. Kim YC, Kim MY, Takaya Y, Niwa M, Chung SK. 2007. Phenolic antioxidants isolated from mulberry leaves. Accepted in Food Sci Biotech (May 10, 2007)
  13. Kubo I, Kinst-Hori I, Yokokawa Y. 1994. Tyrosinase inhibitors from Anacardium occidentale fruits. J Nat Prod 57: 545-551
  14. Maron DM, Ames BN. 1983. Revised methods for the Salmonella mutagenicity test. Mutat Res 113: 173-215
  15. Kubo I, Kinst-Hori I. 1999. Flavonols from saffron flower: tyrosinase inhibitory and inhibition mechanism. J Agric Food Chem 47: 4121-4125
  16. Tada T, Tezuka Y, Shimomura K, Ito S, Hattori H, Kadota S. 2001. Effect of depigmentation for 3,4-di-O-caffeoylquinic acid guided by tyrosinase inhibitory activity from Conyza filaginoides. J Oleo Science 50: 211-215
  17. Kubo I, Kinst-Hori I, Chaudhuri SK, Kubo Y, Sánchez Y, Ogura T. 2000. Flavonols from Heterotheca inuloides: tyrosinase inhibitory activity and structural criteria. Bioorg Med Chem 8: 1749-1755
  18. Lee SH, Choi SY, Kim H, Hwang JS, Lee BG, Gao JJ, Kim SY. 2002. Mulberroside F isolated from the leaves of Morus alba inhibits melanin biosynthesis. Biol Pharm Bull 25: 1045-1048
  19. Baurin N, Arnoult E, Scior T, Do QT, Bernard P. 2002. Preliminary screening of some tropical plants for anti-tyrosinase activity. J Ethnopharm 82: 155-158
  20. Bjeldanes LF, Chang GW. 1977. Mutagenic activity of quercetin and related compounds. Science 197: 577-578
  21. Brown JP, Dietrich PS. 1979. Mutagenicity of plant flavonoids in the salmonella/mammalian microsome test: activation of flavonol glycosides by mixed glycosidases from rat cecal bacteria and other sources. Mutat Res 66: 223-240
  22. Okamoto T. 2005. Safety of quercetin for clinical application. Int J Mol Med 16: 275-278

Cited by

  1. Evaluation of Physicochemical Properties and Biological Activities of Steamed and Fermented Deodeok (Codonopsis lanceolata) vol.44, pp.1, 2012,
  2. Effects of probiotic fermentation on the enhancement of biological and pharmacological activities of Codonopsis lanceolata extracted by high pressure treatment vol.112, pp.2, 2011,