DOI QR코드

DOI QR Code

A NOTE ON THE MONOTONE INTERVAL-VALUED SET FUNCTION DEFINED BY THE INTERVAL-VALUED CHOQUET INTEGRAL

Jang, Lee-Chae

  • Published : 2007.04.30

Abstract

At first, we consider nonnegative monotone interval-valued set functions and nonnegative measurable interval-valued functions. In this paper we investigate some properties and structural characteristics of the monotone interval-valued set function defined by an interval-valued Choquet integral.

Keywords

interval-valued set functions;interval-valued functions;fuzzy measures;Choquet integrals

References

  1. J. Aubin, Set-valued analysis, 1990, Birkauser Boston
  2. R. J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1-12 https://doi.org/10.1016/0022-247X(65)90049-1
  3. M. J. Bilanos, L. M. de Campos and A. Gonzalez, Convergence properties of the monotone expectation and its application to the extension of fuzzy measures, Fuzzy Sets and Systems 33 (1989), 201-212 https://doi.org/10.1016/0165-0114(89)90241-8
  4. L. M. de Campos and M. J. Bilanos, Characterization and comparison of Sugeno and Choquet integrals, Fuzzy Sets and Systems 52 (1992), 61-67 https://doi.org/10.1016/0165-0114(92)90037-5
  5. W. Cong, RSu integral of interval-valued functions and fuzzy-valued functions redefined, Fuzzy Sets and Systems 84 (1996), 301-308 https://doi.org/10.1016/0165-0114(95)00318-5
  6. L. C. Jang and J. S. Kwon, On the representation of Choquet integrals of set-valued functions and null sets, Fuzzy Sets and Systems 112 (2000), 233-239 https://doi.org/10.1016/S0165-0114(98)00184-5
  7. L. C. Jang, T. Kim, and J. D. Jeon, On set-valued Choquet intgerals and convergence theorems, Advanced Studies and Contemporary Mathematics 6 (2003), no. 1, 63-76
  8. L. C. Jang, T. Kim, and J. D. Jeon, On set-valued Choquet intgerals and convergence theorems (II), Bull. Korean Math. Soc. 40 (2003), no. 1, 139-147 https://doi.org/10.4134/BKMS.2003.40.1.139
  9. L. C. Jang, T. Kim, and D. Park, A note on convexity and comonotonically additivity of set-valued Choquet intgerals, Far East J. Appl. Math. 11 (2003), no. 2, 137-148
  10. L. C. Jang, T. Kim, J. D. Jeon, and W. J. Kim, On Choquet intgerals of measurable fuzzy number-valued functions , Bull. Korean Math. Soc. 41 (2004), no. 1, 95-107
  11. L. C. Jang, Interval-valued Choquet integrals and their applications, J. of Applied Mathematics and computing 16 (2004), no. 1-2, 429-443
  12. T. Murofushi and M. Sugeno, An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy measure, Fuzzy Sets and Systems 29 (1989), 201-227 https://doi.org/10.1016/0165-0114(89)90194-2
  13. T. Murofushi and M. Sugeno, A theory of Fuzzy measures: representations, the Choquet integral, and null sets, J. Math. Anal. and Appl. 159 (1991), 532-549 https://doi.org/10.1016/0022-247X(91)90213-J
  14. H. Suzuki, On fuzzy measures de칗ed by fuzzy integrals, J. of Math. Anal. Appl. 132 (1998), 87-101
  15. Z. Wang, The autocontinuity of set function and the fuzzy integral, J. of Math. Anal. Appl. 99 (1984), 195-218 https://doi.org/10.1016/0022-247X(84)90243-9
  16. Z. Wang, On the null-additivity and the autocontinuity of fuzzy measure, Fuzzy Sets and Systems 45 (1992), 223-226 https://doi.org/10.1016/0165-0114(92)90122-K
  17. Z. Wang, G. J. Klir, and W. Wang, Fuzzy measures defined by fuzzy integral and their absolute continuity, J. Math. Anal. Appl. 203 (1996), 150-165 https://doi.org/10.1006/jmaa.1996.0372
  18. Z. Wang, G. J. Klir, and W. Wang, Monotone set functions defined by Choquet integral, Fuzzy measures defined by fuzzy integral and their absolute continuity, Fuzzy Sets and Systems 81 (1996), 241-250 https://doi.org/10.1016/0165-0114(95)00181-6
  19. R. Yang, Z. Wang, P.-A. Heng, and K. S. Leung, Fuzzy numbers and fuzzification of the Choquet integral, Fuzzy Sets and Systems 153 (2005), 95-113 https://doi.org/10.1016/j.fss.2004.12.009
  20. D. Zhang, C. Guo, and D. Liu, Set-valued Choquet integrals revisited, Fuzzy Sets and Systems 147 (2004), 475-485 https://doi.org/10.1016/j.fss.2004.04.005
  21. T. Murofushi and M. Sugeno, RSome quantities represented by Choquet integral, Fuzzy Sets and Systems 56 (1993), 229-235 https://doi.org/10.1016/0165-0114(93)90148-B

Cited by

  1. THE AUTOCONTINUITY OF MONOTONE INTERVAL-VALUED SET FUNCTIONS DEFINED BY THE INTERVAL-VALUED CHOQUET INTEGRAL vol.30, pp.1, 2008, https://doi.org/10.5831/HMJ.2008.30.1.171
  2. A note on the interval-valued generalized fuzzy integral by means of an interval-representable pseudo-multiplication and their convergence properties vol.222, 2013, https://doi.org/10.1016/j.fss.2012.11.016
  3. A note on Linguistic quantifiers modeled by Sugeno integral with respect to an interval-valued fuzzy measures vol.20, pp.1, 2010, https://doi.org/10.5391/JKIIS.2010.20.1.001
  4. Some Characterizations of the Choquet Integral with Respect to a Monotone Interval-Valued Set Function vol.13, pp.1, 2013, https://doi.org/10.5391/IJFIS.2013.13.1.83
  5. Some Properties of Choquet Integrals with Respect to a Fuzzy Complex Valued Fuzzy Measure vol.11, pp.2, 2011, https://doi.org/10.5391/IJFIS.2011.11.2.113
  6. Remarks on monotone interval-valued set multifunctions vol.259, 2014, https://doi.org/10.1016/j.ins.2013.08.032
  7. Some properties of the interval-valued g¯-integrals and a standard interval-valued g¯-convolution vol.2014, pp.1, 2014, https://doi.org/10.1186/1029-242X-2014-88
  8. A Gould type integral of fuzzy functions 2017, https://doi.org/10.1016/j.fss.2017.08.003
  9. On Choquet Integrals with Respect to a Fuzzy Complex Valued Fuzzy Measure of Fuzzy Complex Valued Functions vol.10, pp.3, 2010, https://doi.org/10.5391/IJFIS.2010.10.3.224
  10. Another Gould Type Integral with Respect to a Multisubmeasure vol.57, pp.1, 2011, https://doi.org/10.2478/v10157-010-0034-4
  11. A Gould-type integral of fuzzy functions II pp.1433-7479, 2018, https://doi.org/10.1007/s00500-018-3135-8