DOI QR코드

DOI QR Code

ON INJECTIVE BCI-ALGEBRAS

Ahn, Sun-Shin

  • Received : 2007.04.10
  • Published : 2007.06.25

Abstract

In this paper, we show that BCI-algebras P and Q are injective if and only if its direct sum P $\oplus$ Q is injective. Moreover, we obtain the equivalent conditions for a p-semisimple BCI-algebra to be p-injective.

Keywords

BCK/BCI-algebra;regular;exact;hom (exact) functor;(p-)injective BCI-algebras

References

  1. S. S. Ahn and H. S. Kim, A Hom functor in BCK / BC I-algebras, Kyungpook Math. J. 40 (2000), 269-274.
  2. S. S. Ahn and K. Bang, On projective BCI-algebras, Commun. Korean Math. Soc. 18 (2003), 225-233. https://doi.org/10.4134/CKMS.2003.18.2.225
  3. Z. M. Chen and H. X. Wang, Some universal properties of BCI-algebras, Kobe J. Math. 6 (1989), 43-48.
  4. E. Y. Deeba and S. K. Goel, A note on BCI-algebras, Math. Japonica 33 (1988), 517-522.
  5. W. A. Dudek, On ideals in BCI-algebras with condition (S), Math. Japonica 31 (1986), 25-29.
  6. W. A. Dudek, On group-like BCI-algebras, Demonstratio Math. Japonica 21 (1988), 369-379.
  7. A. Dvurecenskij, S. S. Ahn and H. S. Kim, The Ker-Coker sequence in BCI-algebras, Demonstratio Mathematica 30 (1997), 843-850.
  8. C. S. Hoo, BCI-algebras with condition (S), Math. Japonica 32 (1987), 749-756.
  9. C. S. Hoo and Y. B. Jun, p-projective BCI-algebras, Math. Japonica 38 No. 5 (1993), 841-847.
  10. C. S. Hoo and P. V. R. Murty, A note on associative BCI-algebras, Math. Japonica 32 (1987), 53-55.
  11. Y. B. Jun and J. Meng, On Hom(-,-) as BCK/BCI-algebras, Kyungpook Math. J. 35 (1995), 77-83.
  12. Y. B. Jun, J. Meng and S. M. Wei, A note on Hom(-,-) as BCI-algebras, Comm. Korean Math. Soc. 8(1) (1993), 103-110.
  13. Yonglin Liu, On projective and p-projective BCI-algebras, Math. Japonica 37 (1992), 79-81.
  14. J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa. Co., Seoul, 1994.
  15. D. G. Northcott, A first course of homological algebra, Cambridge Univ. Press, London, 1973.