DOI QR코드

DOI QR Code

ON STAR MOMENT SEQUENCE OF OPERATORS

  • Received : 2007.08.08
  • Accepted : 2007.10.06
  • Published : 2007.12.25

Abstract

Let $\cal{H}$ be a separable, infinite dimensional, complex Hilbert space. We call "an operator $\cal{T}$ acting on $\cal{H}$ has a star moment sequence supported on a set K" when there exist nonzero vectors u and v in $\cal{H}$ and a positive Borel measure ${\mu}$ such that <$T^{*j}T^ku$, v> = ${^\int\limits_{K}}\;{{\bar{z}}^j}\;{{\bar{z}}^k}\;d\mu$ for all j, $k\;\geq\;0$. We obtain a characterization to find a representing star moment measure and discuss some related properties.

Keywords

moment sequence;invariant subspace;essentially normal operator;subnormal operator

References

  1. C. Apostol, C. Foias and D. Voiculescu, Some results on non-quasitriangular operators, IV, Revue Roum. de Math. Pure. Appl. 18 (1973), 487-514.
  2. A. Atzmon and G. Godefroy, An application of the smooth variational principle to the existence of nontrivial invariant subspaces, Compo. R. I'Acad. Sci. Paris, Serie I, Math. 332(2001), 151-156. https://doi.org/10.1016/S0764-4442(00)01803-6
  3. L. Brown, R. G. Douglas and P. Fillmore, Extensions of $C^{*}$-algebras and K-homology, Ann. Math. 105 (1977), 265-324. https://doi.org/10.2307/1970999
  4. C. Foias, I. Jung, E. Ko and C. Pearcy, Operators that admit a moment sequence, Israel J. Math. 145 (2005), 83-91. https://doi.org/10.1007/BF02786685
  5. B. Chevreau, I. Jung, E. Ko and C. Pearcy, Operators that admit a moment sequence, II, Proc. the Amer. Math. Soc., 135 (2007), 1763-1767. https://doi.org/10.1090/S0002-9939-06-08667-9
  6. D. Voiculescu, A note on quasitriangularity and trace-class self-commutators, Acta Sci. Math. (Sz.) 42 (1980), 1303-1320.