DOI QR코드

DOI QR Code

The Quantitative Characterization of the Dispersion State of Single-Walled Carbon Nanotubes

단일벽 탄소나노튜브의 분산도 정량적 평가

  • 윤도경 (성균관대학교 나노과학기술학부) ;
  • 최재붕 (성균관대학교 기계공학부) ;
  • 김영진 (성균관대학교 나노과학기술학부, 기계공학부) ;
  • 백승현 (성균관대학교 기계공학부, 나노과학기술학부)
  • Published : 2007.04.01

Abstract

We have investigated quantitative measurement techniques of the degree of dispersion of single-walled carbon nanotubes (SWNTs). SWNTs were suspended in aqueous media using a sodium dodecyl sulfate (SDS) surfactant. SWNTs with different dispersion states were prepared by controlling the intensity and time of sonication and centrifugation. The laser spectroscopic techniques were employed to characterize the dispersion state; i.e., raman fluorescence and absorption spectroscopic techniques. Raman spectroscopy has been used to probe the dispersion and aggregation state of SWNTs in solution. Individually suspended SWNTs show increased fluorescence peaks and decreased roping peaks at a raman shift 267 $cm^{-1}$ compared with the samples containing bundles of SWNTs. The ultraviolet-visible-near infrared (UV-vis-NIR) absorption spectrum of decanted supernatant samples show sharp van Hove singularity peaks

Keywords

Dispersion;Single-Walled Carbon Nanotube;Fluorescence;Raman Spectroscopy;Absorption Spectroscopy

References

  1. Iijima, S., 1991, 'Helical Microtubules of Graphitic Carbon,' Nature, Vol. 254, pp. 56-58 https://doi.org/10.1038/354056a0
  2. Im, K. H., Hsu, D. K., Cha, C. S., Sim, J. K. and Yang, I. Y., 2002, 'A Study on Ultrasonic Evaluation of Material Defects in Carbon/Carbon Composites,' Journal of Mechanical Science and Technology, Vol. 16, No. 12, pp. 1652-1663
  3. Choi, I. M., Woo, S. Y. and Kim, B. S., 2005, 'Ionization Gauge by Carbon Nanotube Field Emission,' Journal of Mechanical Science and Technology, Vol. 19, No. 11, pp. 2127-2132 https://doi.org/10.1007/BF02916508
  4. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, H. Y., Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseria, G. E., Tom?nek, D., Fischer, J. E. and Smalley, R. E., 1996, 'Crystalline Ropes of Metallic Carbon Nanotubes,' Science, Vol. 273, pp. 483-487 https://doi.org/10.1126/science.273.5274.483
  5. Girifalco, L. A., Hodak, M. and Lee, R. S., 2000, 'Carbon Nanotubes, Buckyballs, Ropes, and a Universal Graphitic Potential,' Phys. Rev. B, Vol. 62, No. 19, pp. 13104-13110 https://doi.org/10.1103/PhysRevB.62.13104
  6. Kim, D. S., Nepal, D. and Geckeler, K. E., 2005, 'Individualization of Single-Walled Carbon Nanotubes: Is the Sovent Important?', Small, Vol. 1, No. 11, pp. 1117-1124 https://doi.org/10.1002/smll.200500167
  7. Moore, V. C., Strano, M. S., Haroz, E. H., Hauge, R. H., Smalley, R. E., Schmidt, J. and Talmon, Y., 2003, 'Individually Suspended Single-Walled Carbon Nanotubes in Various Surfactants,' Nano Lett., Vol. 3, No. 10, pp. 1379-1382 https://doi.org/10.1021/nl034524j
  8. Dalton, A. B., Stephan, C., Coleman, J. N., McCarthy, B., Ajayan, P. M., Lefrant, S., Bernier, P., Blau, W. J. and Byrne, H. J., 2000, 'Selective Interaction of a Semiconjugated Organic Polymer with Single-Wall Nanotubes,' J. Phys. Chem. B., Vol. 104, pp. 10012-10016 https://doi.org/10.1021/jp002857o
  9. Zheng, M., Jagota, A., Semke, E. D., Diner, B. A., Mclean, R. S., Lustig, S. R.,Richardson, R. E. and Tassi, N. C., 2003, 'DNA-Assisted Dispersion and Separation of Carbon Nanotubes,' Nature Mater., Vol. 2, pp. 338-342 https://doi.org/10.1038/nmat877
  10. Dumortier, H., Lacotte, S., Pastorin, G., Marega, R., Wu, W., Bonifazi, D., Briand, J. P., Prato, M., Muller, S. and Bianco, A., 2006, 'Functionalized Carbn Nanotubes Are Non-Cytotoxic and Preserve the Functionality of Primary Immune Cells,' Nano Letters, Vol. 6, pp. 1522-1528 https://doi.org/10.1021/nl061160x
  11. Krstic, V., Duesberg, G. S., Muster, J., Burghard, M. and Roth, S., 1998, 'Langmuir-Blodgett Films of Matrix-Diluted Single-Walled Carbon Nanotubes,' Chem. Mater., Vol. 10, pp. 2338-2340 https://doi.org/10.1021/cm980207f
  12. Duesberg, G. S., Muster, J., Krstic, V., Burghard, M. and Roth, S., 1998, 'Chromatographic Size Separation of Single-Wall Carbon Nanotubes,' Appl. Phys. A: Mater. Sci. Process, Vol. 67, No. 1, pp. 117-119 https://doi.org/10.1007/s003390050747
  13. Jiang, L., Gao, L. and Sun, J., 2003 'Production of Aqueous Colloidal Dispersions of Carbon Nanotubes,' Journal of Colloid and Interface Science, Vol. 260, pp. 89-94 https://doi.org/10.1016/S0021-9797(02)00176-5
  14. Dresselhaus, M. S., Dresselhaus, G., Saito, R. and Jorio, A., 2005, 'Raman Spectroscopy of Carbon Nanotubes,' Physics Reprots, Vol. 409, pp. 47-99 https://doi.org/10.1016/j.physrep.2004.10.006
  15. O'Connell, M. J., Bachilo, S. M., Huffman, C. B., Moore, V. C., Strano, M. S., Haroz, E. H., Rialon, K. L., Boul, P. J., Noon, W. H., Kittrell, C., Ma, J., Hauge, R. H., Weisman, R. B. and Smalley. R. E., 2002, 'Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,' Science, Vol. 297, pp. 593-596 https://doi.org/10.1126/science.1072631
  16. Heller, D. A., Barone, P. W., Swanson, J. P., Mayrhofer, R. M. and Strano, M. S., 2004, 'Using Raman Spectroscopy to Elucidate the Aggregation State of Single-Walled Carbon Nanotubes,' J. Phys. Chem. B., Vol. 108, pp. 6905-6909 https://doi.org/10.1021/jp037690o
  17. Zheng, M., Jagota, A., Strano, M. S., Santos, A. P., Barone, P., Chou, S. G., Diner, B., A., Dresselhaus, M. S., Mclean, R. S., Onoa, G. B., Samsonidze, G. G., Semke, E. D., Usrey, M. and Walls, D. J., 2003, 'Structure-Based Carbon Nanotube Sorting by Sequence-Dependent DNA Assembly,' Science, Vol. 302, pp. 1545-1548 https://doi.org/10.1126/science.1091911
  18. Graff, R. A., Swanson, J. P., Barone, P. W., Baik, S., Heller, D. A. and Strano, M. S., 2005, 'Achieving Individual-Nanotube Dispersion at High Loading in Single-Walled Carbon Nanotube,' Adv. Mater., Vol. 17, No. 8, pp. 980-984 https://doi.org/10.1002/adma.200401218
  19. Reich, R. and Thomsen, C., 2002, 'Electronic Band Structure of Isolated and Bundled Carbon Nanotubes,' Phys. Rev. B, Vol. 65, pp. 155411-155421 https://doi.org/10.1103/PhysRevB.65.155411