Curie Temperature Transition According to Microstructure of Polymer Chain in Poly(VDF/TrFE/CTFE) Terpolymer

Poly(VDF/TrFE/CTFE) 3성분계 고분자의 배열구조에 따른 상전이 온도의 변화

  • Kim, Eun-Kyoung (Research Center for Biorefinery, Korea Research Institute of Chemical Technology) ;
  • Lee, Sang-Goo (Research Center for Biorefinery, Korea Research Institute of Chemical Technology) ;
  • Ha, Jong-Wook (Research Center for Biorefinery, Korea Research Institute of Chemical Technology) ;
  • Park, In-Jun (Research Center for Biorefinery, Korea Research Institute of Chemical Technology) ;
  • Lee, Soo-Bok (Research Center for Biorefinery, Korea Research Institute of Chemical Technology) ;
  • Park, Cheol-Min (Department of Matallurgical System Engineering, School of Advanced Materials Engineering, Yonsei University) ;
  • Kim, Young-Ho (Department of Fine Chemical Engineering & Chemistry, Chungnam National University)
  • 김은경 (한국화학연구원 바이오리파이너리센터) ;
  • 이상구 (한국화학연구원 바이오리파이너리센터) ;
  • 하종욱 (한국화학연구원 바이오리파이너리센터) ;
  • 박인준 (한국화학연구원 바이오리파이너리센터) ;
  • 이수복 (한국화학연구원 바이오리파이너리센터) ;
  • 박철민 (연세대학교 금속시스템공학과) ;
  • 김영호 (충남대학교 공업화학과)
  • Published : 2007.07.31

Abstract

In this study, terpolymer of vinylidene fluoride (VDF), trifluoroethylene (TrFE), and chlorotrifluoroethylene (CTFE) were prepared by suspension polymerization using di-tertiary-butyl peroxide (DTBP) as an initiator. The structural characteristics including microstructure and chain conformation of the polymers have been carefully elucidated as a function of the chemical composition using NMR, FT-IR. The intensity of absorption bands of the $\beta$-phase gradually decreases and the $\gamma$-phase increases with the increment of CTFE mol%. The analysis results of DSC shows that the Curie phase transition temperature ($T_c$) of the terpolymer gradually shifts to ambient temperature and trace becomes smaller and broader with the increment of CTFE mol%. Also, activation energies of the samples were calculated by Freeman-Carroll method.

Keywords

vinylidene fluoride (VDF);trifluoroethylene (TrFE);chlorotrifluoroethylene (CTFE);Curie temperature

References

  1. S. J. Baik, S. Choi, U. I. Chyng, and J. T. Moon, 2003 IEDM Technical Digest, Session 22, 3 (2003)
  2. J. S. Choi, Y. M. Yoo, and D. H. Suh, J. Korean Ind. Eng. Chem., 15, 815 (2004)
  3. Pierre-Yves Mabboux and Karen K. Gleason, J. Fluorine Chem., 113, 27 (2002)
  4. A. J. Louinger, Development ill crystalline polymer, Applied Science, London, p. 52 (1982)
  5. K. Tashiro, M. Kobayashi, and H. Tadokoro. Macromolecules, 14, 1757 (1981)
  6. K. J. Kim, G. B. Kim, C. L. Valencia, and J. F. Rabolt, J. Polym. Sci.; Part B: Polym. Phys., 32, 2435 (1994)
  7. S. Osaki and Y. Ishida, J. Polym. Sci., 13, 1071 (1975)
  8. S. G. Lee, Synthesis and Phase Transition Behavior of Fluorinated Ferroelectric Polymer for Polymer Random Access Memory, Chungbuk National University, Master's Thesis (2006)
  9. Y. Lu. J. Claude. Q. Zhang, and Q. Wang, Macromolecules, 39. 6962 (2006) https://doi.org/10.1021/ma061311i
  10. A. K. Dikishit and A. K. Nandi Macromolecules, 33, 2616 (2000)
  11. Y. Kubouchi, Y. Kumetani, T. Yagi, T. Masuda, and A. Nakajima, Pure & Appl. Chem., 61, 83 (1989) https://doi.org/10.1351/pac198961060989
  12. T. C. Chung and A. Petchsuk. Macromolecules, 35, 7678 (2002) https://doi.org/10.1021/ma011278u
  13. W. Wang, Z. Zhang, and T. C. M. Chung, Macromolecules, 39, 4268 (2006) https://doi.org/10.1021/ma060738m
  14. Pau K. Isbester, Jennifer L. Brandt, Thomas A. Kestner, and Eric J. Munson, Macromolecules, 31, 8192 (1998)
  15. H. Xu, G. Shanthi, V. Bharti, and Q. M. Zhang, Macromolecules, 33, 4125 (2000)
  16. Y. Takshashi and T. Furukaws, Macromolecules, 37, 2807 (2004) https://doi.org/10.1021/ma0359990
  17. Pierre-Yves Maboux and Karen K. Gleason, J. Fluorine Chem., 113, 27 (2002)
  18. K. Tshiro, H. Tadokoro, and M. Kobayashi, Ferroelectrics, 32, 167 (1981)
  19. K. Tashiro, Y. Itoh, M. Kobayahi, and H. Tadokoro, Macromolecules, 18, 2600 (1985)
  20. E. S. Freeman and B. Carroll, J. Phys. Chem., 62, 394 (1958) https://doi.org/10.1021/j150566a014
  21. T. Itoh, K. Maeda, H. Shibata, S. Tasaka, and M. Hashimoto, J. Phys. Soc. Jpn., 97, 23 (1998)
  22. Y. Lu, J. Claude, Q. Zhang, and Q. Wang, Macromolecules, 39, 6962 (2006) https://doi.org/10.1021/ma061311i
  23. N. M. Reynolds, K. J. Kim, C. Chang, and S. L. Hsu, Macromolecules, 22, 1100 (1989) https://doi.org/10.1021/ma00192a076
  24. B. Bickford, NonVolatile memory requirements in a mobile computing environment, 1996 Int. 1 NonVolatile Memory Technology Conference 3 (1996)
  25. Z. Y. Cheng. D. Olson, H. Xu. F. Xia. J. S.hundal, and Q. M. Zhang. Macromolecules, 35. 664 (2002) https://doi.org/10.1021/ma011278u