Poly(VDF/TrFE/CTFE) 3성분계 고분자의 배열구조에 따른 상전이 온도의 변화

Curie Temperature Transition According to Microstructure of Polymer Chain in Poly(VDF/TrFE/CTFE) Terpolymer

  • 김은경 (한국화학연구원 바이오리파이너리센터) ;
  • 이상구 (한국화학연구원 바이오리파이너리센터) ;
  • 하종욱 (한국화학연구원 바이오리파이너리센터) ;
  • 박인준 (한국화학연구원 바이오리파이너리센터) ;
  • 이수복 (한국화학연구원 바이오리파이너리센터) ;
  • 박철민 (연세대학교 금속시스템공학과) ;
  • 김영호 (충남대학교 공업화학과)
  • Kim, Eun-Kyoung (Research Center for Biorefinery, Korea Research Institute of Chemical Technology) ;
  • Lee, Sang-Goo (Research Center for Biorefinery, Korea Research Institute of Chemical Technology) ;
  • Ha, Jong-Wook (Research Center for Biorefinery, Korea Research Institute of Chemical Technology) ;
  • Park, In-Jun (Research Center for Biorefinery, Korea Research Institute of Chemical Technology) ;
  • Lee, Soo-Bok (Research Center for Biorefinery, Korea Research Institute of Chemical Technology) ;
  • Park, Cheol-Min (Department of Matallurgical System Engineering, School of Advanced Materials Engineering, Yonsei University) ;
  • Kim, Young-Ho (Department of Fine Chemical Engineering & Chemistry, Chungnam National University)
  • 발행 : 2007.07.31

초록

이 논문에서는 vinylidene fluoride(VDF), trifluoroethylene(TrFE), chlorotrifluoroethylene(CTFE)을 사용하여 3성분계 고분자를 합성하였으며, 저온 개시제 di-tertiary-butylperoxide(DTBP)를 사용하여 현탁중합하였다. NMR, FT-IR을 통해 3성분계 고분자 사슬의 미세구조, 사슬형태의 변화에 대해 알 수 있었다. CTFE mol%가 증가할수록 $\beta$ 상태는 점차적으로 감소하고 $\gamma$ 상태는 증가하는 것을 알 수 있었다. DSC 분석결과, CTFE mol%가 증가할수록 상전이 온도($T_c$)는 상온으로 낮아지며 그 곡선은 점차 작아지고 넓게 퍼지는 현상을 확인하였다. 활성화 에너지는 Freeman-Carroll법에 의해 계산되었다.

참고문헌

  1. B. Bickford, NonVolatile memory requirements in a mobile computing environment, 1996 Int. 1 NonVolatile Memory Technology Conference 3 (1996)
  2. S. J. Baik, S. Choi, U. I. Chyng, and J. T. Moon, 2003 IEDM Technical Digest, Session 22, 3 (2003)
  3. J. S. Choi, Y. M. Yoo, and D. H. Suh, J. Korean Ind. Eng. Chem., 15, 815 (2004)
  4. Y. Takshashi and T. Furukaws, Macromolecules, 37, 2807 (2004) https://doi.org/10.1021/ma0359990
  5. Z. Y. Cheng. D. Olson, H. Xu. F. Xia. J. S.hundal, and Q. M. Zhang. Macromolecules, 35. 664 (2002) https://doi.org/10.1021/ma011278u
  6. Y. Lu. J. Claude. Q. Zhang, and Q. Wang, Macromolecules, 39. 6962 (2006) https://doi.org/10.1021/ma061311i
  7. T. C. Chung and A. Petchsuk. Macromolecules, 35, 7678 (2002) https://doi.org/10.1021/ma011278u
  8. W. Wang, Z. Zhang, and T. C. M. Chung, Macromolecules, 39, 4268 (2006) https://doi.org/10.1021/ma060738m
  9. Y. Kubouchi, Y. Kumetani, T. Yagi, T. Masuda, and A. Nakajima, Pure & Appl. Chem., 61, 83 (1989) https://doi.org/10.1351/pac198961060989
  10. Pierre-Yves Maboux and Karen K. Gleason, J. Fluorine Chem., 113, 27 (2002)
  11. T. Itoh, K. Maeda, H. Shibata, S. Tasaka, and M. Hashimoto, J. Phys. Soc. Jpn., 97, 23 (1998)
  12. Y. Lu, J. Claude, Q. Zhang, and Q. Wang, Macromolecules, 39, 6962 (2006) https://doi.org/10.1021/ma061311i
  13. Pau K. Isbester, Jennifer L. Brandt, Thomas A. Kestner, and Eric J. Munson, Macromolecules, 31, 8192 (1998)
  14. Pierre-Yves Mabboux and Karen K. Gleason, J. Fluorine Chem., 113, 27 (2002)
  15. K. Tshiro, H. Tadokoro, and M. Kobayashi, Ferroelectrics, 32, 167 (1981)
  16. A. J. Louinger, Development ill crystalline polymer, Applied Science, London, p. 52 (1982)
  17. K. Tashiro, Y. Itoh, M. Kobayahi, and H. Tadokoro, Macromolecules, 18, 2600 (1985)
  18. A. K. Dikishit and A. K. Nandi Macromolecules, 33, 2616 (2000)
  19. K. Tashiro, M. Kobayashi, and H. Tadokoro. Macromolecules, 14, 1757 (1981)
  20. N. M. Reynolds, K. J. Kim, C. Chang, and S. L. Hsu, Macromolecules, 22, 1100 (1989) https://doi.org/10.1021/ma00192a076
  21. K. J. Kim, G. B. Kim, C. L. Valencia, and J. F. Rabolt, J. Polym. Sci.; Part B: Polym. Phys., 32, 2435 (1994)
  22. S. Osaki and Y. Ishida, J. Polym. Sci., 13, 1071 (1975)
  23. H. Xu, G. Shanthi, V. Bharti, and Q. M. Zhang, Macromolecules, 33, 4125 (2000)
  24. S. G. Lee, Synthesis and Phase Transition Behavior of Fluorinated Ferroelectric Polymer for Polymer Random Access Memory, Chungbuk National University, Master's Thesis (2006)
  25. E. S. Freeman and B. Carroll, J. Phys. Chem., 62, 394 (1958) https://doi.org/10.1021/j150566a014