Journal of the Computational Structural Engineering Institute of Korea (한국전산구조공학회논문집)
- Volume 20 Issue 1
- /
- Pages.29-37
- /
- 2007
- /
- 1229-3059(pISSN)
- /
- 2287-2302(eISSN)
Analysis of Anisotropic Folded Structures using Triangular and Quadrilateral Elements
3절점 및 4절점 요소를 이용한 비등방성 절판 구조물의 해석
- Published : 2007.02.28
Abstract
This study deals with displacement analysis of anisotropic folded structures with triangular elements and quadrilateral elements. When folded plates are analyzed, triangular elements as well as quadrilateral elements are needed for conveniences of modelling. However, using triangular elements is not a simple problem. A simple formulation is presented which allows a quadrilateral element to degenerate into a triangular element. Therefore it can easily be used for computational simplicity and avoided complexities on mixed use of triangular element and quadrilateral element. In this paper, a high-order shear deformation theory using only Lagrangian interpolation functions and drilling degrees of freedom for folded plates are utilized for more accurate analysis. Especially, various results of anisotropic laminated and folded composite structures with triangular element and quadrilateral element show the structural behavior characteristics of them.
File
References
- 유용민, 임성순, 장석윤(2003) 임의의 골절각도를 갖는 비등방성 절판의 변위형상 비교, 대한토목학회, 23 (6-A), pp.1311-1319
- 유용민, 임성순, 장석윤(2006) 곡절 길이비에 따른 복합적층 절판 구조물의 거동, 한국전산구조공학회 논문집, 19(3), pp.223-231
- 이병채, 이용주, 김동석, 구본용(1992) 삼각형 판 요소의 변위 거동에 대한 비교 연구, 한국전산구조공학회 논문집, 5(2), pp.105-118
- 이상열, 유용민, 장석윤(2004) 고차전단변형 판이론을 이용한 채널단면을 갖는 복합적층 절판 구조물의 유한요소 진동해석, 한국전산구조공학회 논문집, 17(1), pp.21-30
- Allmen , D. J(1984) A compatible triangular element including vertex rotations for plane elasticity analysis. Computers & Structures. 19(1-2). pp.1-8 https://doi.org/10.1016/0045-7949(84)90197-4
- Dhainaut, Marc(1997) A comparison between serendipity and lagrange plate elements in the finite element method. Communications in numerical methods in engineering, 13(5). pp.343-353 https://doi.org/10.1002/(SICI)1099-0887(199705)13:5<343::AID-CNM60>3.0.CO;2-2
- Eratli, Nihal, Akoz, A. Yalcin(2002) Mixed finite element formulation for folded plates, Structural Engineering and Mechanics, 13(2). pp.155-170 https://doi.org/10.12989/sem.2002.13.2.155
- Goldberg, J. E., Leve, H. L.(1957) Theory of prismatic folded plate structures, Int. Association for Bridge and Structural Engineering J., 17
- Ibrahimbegovic, A., Wilson, E. L.(1991) A united formulation for triangular and quadrilateral flat shell elements with six nodal degree of freedom, Communication in Applied Numerical Methods, 7. pp.1-9 https://doi.org/10.1002/cnm.1630070102
- Lo, K. H., Christensen, R. M., Wu, E. M.(1977) A higher-order theory of plate deformation. Part 1 : homogeneous plates. Journal of Applied Mechanics, 44. pp.663-668 https://doi.org/10.1115/1.3424154
- Lo, K H., Christensen, R. M., Wu, E. M.(1977) A higher-order theory of plate deformation. Part 2:laminated plates. Journal of Applied Mechanics. 44. pp.669-676 https://doi.org/10.1115/1.3424155
- Niyogi, A Guha, Laha, M. K., Sinha, P. K.(1999) Finite element vibration analysis of laminated composite folded plate structures. Shock and Vibration, 6(5/6). pp.273-284 https://doi.org/10.1155/1999/354234
- Reddy, J. N. (1984) A simple higher-order theory for laminated composite plates. Journal of Applied Mechanics. 51, pp.745-752 https://doi.org/10.1115/1.3167719
- Putcha, N. S., Reddy, J. N.(1986) A refined mixed shear flexible finite element for the nonlinear analysis of laminated plates. Computers & Structures. 22(4). pp.529-538 https://doi.org/10.1016/0045-7949(86)90002-7
- Sadek, Edward A.(1998) Some serendipity finite elements for the analysis of laminated plates. Computers & Structures, 69(1). pp.37-51 https://doi.org/10.1016/S0045-7949(98)00077-7
- Turne, M. J., Clough, R. W., Martin, H. C., Topp, L. J.(1956) Stiffness and deflection analysis of complex structures. Journal of Aero/Space Science. 23. pp.805-823
- Bathe, Klaus-Jurgen(1996) Finite element procedures. Prentice Hall
- Zienkiewicz, O. C., Taylor, R. C.(1991) The finite element method. 2. 4th edition. McGraw-Hill