DOI QR코드

DOI QR Code

HESSIAN GEOMETRY OF THE HOMOGENEOUS GRAPH DOMAIN

  • Choi, Yun-Cherl (DIVISION OF GENERAL EDUCATION KWANGWOON UNIVERSITY) ;
  • Chang, Kyeong-Soo (SANGSAN HIGH SCHOOL)
  • Published : 2007.07.31

Abstract

In this paper, we will investigate the Hessian geometry of the homogeneous domain over the hypersurface given by a function F : $\mathbb{R}^n{\rightarrow}\mathbb{R}$ with ${\mid}{\det}\;DdF\mid=1$.

Keywords

Hessian algebra;Hessian domain;homomgeneous graph domain;Hessian geometry;sectional curvature

References

  1. N. Bokan, K. Nomizu, and U. Simon, Affine hypersurfaces with parallel cubic forms, Tohoku Math. J. 42 (1990), no. 2, 101-108 https://doi.org/10.2748/tmj/1178227697
  2. Y. Choi and H. Kim, A characterization of Cayley Hypersurface and Eastwood and Ezhov conjecture, Internat. J. Math. 16 (2005), no. 8, 841-861 https://doi.org/10.1142/S0129167X05003168
  3. Y. Choi, Nondegenerate affine homogeneous domain over a graph, J. Korean Math. Soc. 43 (2006), no. 6, 1301-1324 https://doi.org/10.4134/JKMS.2006.43.6.1301
  4. F. Dillen and L. Vrancken, Hypersurfaces with parallel difference tensor, Japan. J. Math. (N.S.) 24 (1998), no. 1, 43-60 https://doi.org/10.4099/math1924.24.43
  5. F. Dillen, L. Vrancken, and S. Yaprak, Affine hypersurfaces with parallel cubic form, Nagoya Math. J. 135 (1994), 153-164 https://doi.org/10.1017/S0027763000005006
  6. J. Hua Hao and H. Shima, Level surfaces of nondegenerate functions in $R^{n+1}$, Geom. Dedicata 50 (1994), 193-204 https://doi.org/10.1007/BF01265310
  7. H. Kim, Developing maps of affinely flat Lie groups, Bull. Korean Math. Soc. 34 (1997), no. 4, 509-518
  8. A. Mizuhara, On left symmetric algebras with a principal idempotent, Math. Japon. 49 (1999), 39-50
  9. B. O'Neill, Semi-Riemannian geometry, Pure and Applied Mathematics 103, Academic Press Inc., 1983
  10. H. Shima, On certain locally flat homogeneous manifolds of solvable Lie groups, Osaka J. Math. 13 (1976), 213-229
  11. H. Shima, Homogeneous convex domains of negative sectional curvature J. Differential Geom. 12 (1977), no. 3, 327-332 https://doi.org/10.4310/jdg/1214434088
  12. H. Shima, Homogeneous Hessian manifolds, Ann. lnst. Fourier (Grenoble) 30 (1976), no. 3, 91-128
  13. E. B. Vinberg, The theory of convex homogeneous cones, Trans. Moscow Math. Soc. 12 (1963), 340-403
  14. K. Nomizu and T. Sasaki, Affine differential geometry, Cambridge University Press, 1994
  15. H. Shima, The Geometry of Hessian Structures, World Scientific Publishing Co., 2007

Cited by

  1. Abelian Hessian algebra and commutative Frobenius algebra vol.428, pp.8-9, 2008, https://doi.org/10.1016/j.laa.2007.11.020
  2. Affine hypersurfaces with parallel difference tensor relative to affine α-connection vol.86, 2014, https://doi.org/10.1016/j.geomphys.2014.07.018
  3. Left-symmetric algebras and homogeneous improper affine spheres vol.53, pp.3, 2018, https://doi.org/10.1007/s10455-017-9582-0