DOI QR코드

DOI QR Code

APPROXIMATING THE STIELTJES INTEGRAL OF BOUNDED FUNCTIONS AND APPLICATIONS FOR THREE POINT QUADRATURE RULES

  • Dragomir, Sever Silvestru
  • Published : 2007.08.31

Abstract

Sharp error estimates in approximating the Stieltjes integral with bounded integrands and bounded integrators respectively, are given. Applications for three point quadrature rules of n-time differentiable functions are also provided.

Keywords

Stieltjes integral;functions of bounded variation;Lipschitzian functions;monotonic functions;quadrature rule

References

  1. Pietro Cerone and S. S. Dragomir, Three point identities and inequalities for n-time differentiable functions, SUT J. Math. 36 (2000), no. 2, 351-383
  2. Pietro Cerone and S. S. Dragomir, Approximation of the Stieltjes integral and applications in numerical integration, Appl. Math. 51 (2006), no. 1, 37-47 https://doi.org/10.1007/s10492-006-0003-0
  3. Pietro Cerone, S. S. Dragomir, J. Roumeliotis, and J. Sunde, A new generalization of the trapezoid formula for n-time differentiable mappings and applications, Demonstratio Math. 33 (2000), no. 4, 719-736
  4. S. S. Dragomir, Inequalities of Gruss type for the Stieltjes integral and applications, Kragujevac J. Math. 26 (2004), 89-122
  5. S. S. Dragomir, A generalisation of Cerone's identity and applications, Tamsui Oxford J. Math. Sci. 23 (2007), No. 1, 79-90, Preprint RGMIA Res. Rep. Coll. 8 (2005), No. 2. Artcile 19
  6. S. S. Dragomir, Inequalities for Stieltjes integrals with convex integrators and applications, Appl. Math. Lett. 20 (2007), no. 2, 123-130 https://doi.org/10.1016/j.aml.2006.02.027
  7. S. S. Dragomir and I. Fedotov, An inequality of GrAuss' type for Riemann-Stieltjes inte- gral and applications for special means, Tamkang J. Math. 29 (1998), no. 4, 287-292
  8. S. S. Dragomir and I. Fedotov, A Gruss type inequality for mappings of bounded variation and applications to numerical analysis, Nonlinear Funct. Anal. Appl. 6 (2001), no. 3, 425-438
  9. S. S. Dragomir and Th. M. Rassias(Eds.), Ostrowski type inequalities and applications in numerical integration, Kluwer Academic Publishers, Dordrecht, 2002
  10. Pietro Cerone, S. S. Dragomir, and J. Roumeliotis, Some Ostrowski type inequalities for n-time differentiable mappings and applications, Demonstratio Math. 32 (1999), no. 4, 697-712

Cited by

  1. A three point quadrature rule for functions of bounded variation and applications vol.57, pp.3-4, 2013, https://doi.org/10.1016/j.mcm.2012.07.024