Bayesian Estimation of the Nakagami-m Fading Parameter

  • Son, Young-Sook (Department of Statistics, Chonnam National University) ;
  • Oh, Mi-Ra (Department of Statistics, Chonnam National University)
  • Published : 2007.08.31


A Bayesian estimation of the Nakagami-m fading parameter is developed. Bayesian estimation is performed by Gibbs sampling, including adaptive rejection sampling. A Monte Carlo study shows that the Bayesian estimators proposed outperform any other estimators reported elsewhere in the sense of bias, variance, and root mean squared error.


  1. Adbi, A. and Kaveh, M. (2000). Performance comparison of three different estimators for the Nakagami m parameter using Monte Carlo simulation. IEEE Communications Letters, 4, 119-121
  2. Abramowitz, M. and Stegun, I. A. (1972). Polygamma Functions. Handbook of Mathematical Functions with Formulas, Graph, and Mathematical Tables, 9th printing, Dover, New York
  3. Bowman, K. O. and Shenton, L. R. (1988). Properties of Estimators for the Gamma Distribution. Marcel Dekker, New York
  4. Cheng, J. and Beaulieu, N. C. (2001). Maximum-likelihood based estimation of the Nakagami m parameter. IEEE Communications Letters, 5, 101-103
  5. Cheng, J. and Beaulieu, N. C. (2002). Generalized moment estimatiors for the Nakagami fading parameter. IEEE Communications Letters, 6, 144-146
  6. Damsleth, E. (1975). Conjugate classes for gamma distributions. Scandinavian Journal of Statistics, 2, 80-84
  7. Gelfand, A. E. and Smith, A. F. M. (1990). Sampling based approaches to calculating marginal densities. Journal of the American Statistical Association, 85, 398-409
  8. Gilks, W. R. and Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Applied Statistics, 41, 337-348
  9. Greenwood, J. A. and Durand, D. (1960). Aids for fitting the gamma distribution by maximum likelihood. Technometrics, 2, 55-65
  10. Miller, R. B. (1980). Bayesian analysis of the two-parameter gamma distribution. Technometrics, 22, 65-69
  11. Nakagami, M. (1960). The m-distribution: a general formula of intensity distribution of rapid fading. Statistical Methods in Radio Wave Propagation, Oxford, U.K.; Pergamon Press, 3-36
  12. Ripley, B. D. (1987). Stochastic Simulation. John Wiley & Sons, New York
  13. Suzuki, H. (1977) A statistical model for urban radio propogation, IEEE transactions on communications, COM-25, 673-680
  14. The MathWorks Inc. (2002). MATLAB/Statistics Toolbox. Version 6.5, Natick, MA
  15. Thom, H. C. (1958). A note on the gamma distribution. Monthly Weather Review, 86, 117-122<0117:ANOTGD>2.0.CO;2
  16. Wiens, D. P., Cheng, J. and Beaulieu, N. C. (2003). A Class of method of moments estimators for the two-parameter gamma family. Parkistan Journal of Statistics, 29, 29-141
  17. Zhang, Q. T. (2002). A note on the estimation of Nakagami-m fading parameter. IEEE Communications Letters, 6, 237-238
  18. Son, Y. S. and Oh, M. (2006). Bayesian estimation of the two-parameter gamma Distribution. Communications in Statistics-Simulation and Computation, 35, 285-293

Cited by

  1. Posterior Properties of the Nakagami-m Distribution Using Noninformative Priors and Applications in Reliability vol.67, pp.1, 2018,