Wall charge effects on structural properties of a coarse-grained FENE polyelectrolyte confined in slit nanochannels by Brownian dynamics simulation

  • Jeon, Jong-Gu (Complex Fluids Research Lab., Korea Institute of Science and Technology(KIST)) ;
  • Chun, Myung-Suk (Complex Fluids Research Lab., Korea Institute of Science and Technology(KIST))
  • Published : 2007.08.31

Abstract

A polyelectrolyte chain confined in a slit nanochannel exhibits a structural transition from the one in free space. In this paper, the effect of the long-range electrostatic interactions between the xanthan polyelectrolyte and the slit wall on the confined xanthan conformation is investigated via the Brownian dynamics simulation. A neutral and two negatively charged surfaces of polydimethylsiloxane (PDMS) and glass are combined to make four kinds of slit channels with different charge characteristics: i) neutral-neutral, ii) glass-glass, iii) neutral-PDMS and iv) neutral-glass walls. Their walls are characterized by uniform surface charge densities determined from experimental data of zeta potential. Both the nonmonotonic chain size variation and the loss of long-range bond vector correlation, previously observed under confinement in the PDMS-PDMS slit, are also found in the neutral slit, demonstrating the nonelectrostatic origin of such crossover behaviors. As expected, the effect of wall charges is negligible at sufficiently high medium ionic strength of 100mM but it becomes significant in the opposite limit of 0.01mM. In the latter case, the high charge density of glass walls strengthens the effective confinement of a negatively charged polyelectrolyte and produces a xanthan structure comparable to that confined in a much narrower neutral slit. The obtained structural data suggest the possibility of controlling the structure of confined polyelectrolytes by the modification of surface charge characteristics of micro/nanofluidic devices in combination with the adjustment of the medium ionic strength.

References

  1. Allison, S.A., 1986, Brownian dynamics simulation of wormlike chains: Fluorescence depolarization and depolarized light scattering, Macromolecules 19, 118-124 https://doi.org/10.1021/ma00155a019
  2. Brochard-Wyart, F., T. Tanaka, N. Borghi and P.-G. de Gennes, 2005, Semiflexible polymers confined in soft tubes, Langmuir 21, 4144-4148 https://doi.org/10.1021/la0474114
  3. Chen, Y.L., M.D. Graham, J.J. de Pablo, G.C. Randall, M. Gupta and P.S. Doyle, 2004, Conformation and dynamics of single DNA molecules in parallel-plate slit microchannels, Phys. Rev. E 70, 060901-4 https://doi.org/10.1103/PhysRevE.70.060901
  4. Chun, M.-S. and O.O. Park, 1994, On the intrinsic viscosity of anionic and nonionic rodlike polysaccharide solutions, Macromol. Chem. Phys. 195, 701-711 https://doi.org/10.1002/macp.1994.021950227
  5. Chun, M.-S. and S. Lee, 2005, Flow imaging of dilute colloidal suspension in PDMS-based microfluidic chip using fluorescence microscopy, Colloids Surf. A 267, 86-94 https://doi.org/10.1016/j.colsurfa.2005.06.046
  6. Cordeiro, C.E., M. Molisana and D. Thirumalai, 1997, Shape of confined polymer chains, J. Phys. II France 7, 433-447 https://doi.org/10.1051/jp2:1997136
  7. Daoud, M. and P.-G. de Gennes, 1977, Statistics of macromolecular solutions trapped in small pores, J. Phys. France 38, 85-93 https://doi.org/10.1051/jphys:0197700380108500
  8. Doi, M. and S.F. Edwards, 1986, The Theory of Polymer Dynamics, Clarendon, Oxford
  9. Ermak, D.L. and J.A. McCammon, 1978, Brownian dynamics with hydrodynamic interactions, J. Chem. Phys. 69, 1352- 1360 https://doi.org/10.1063/1.436761
  10. Fernandes, M.X., M.L. Huertas, M.A.R.B. Castanho and J. Garcia de la Torre, 2000, Conformation and dynamic properties of a saturated hydrocarbon chain confined in a model membrane: A brownian dynamics simulation, Biochim. Biophys. Acta 1463, 131-141 https://doi.org/10.1016/S0005-2736(99)00188-1
  11. Hernandez-Ortiz, J.P., J.J. de Pablo and M.D. Graham, 2007, Fast computation of many-particle hydrodynamic and electrostatic interactions in a confined geometry, Phys. Rev. Lett. 98, 140602/1-4
  12. Hur, J.S., E.S.G. Shaqfeh and R.G. Larson, 2000, Brownian dynamics simulations of single DNA molecules in shear flow, J. Rheol. 44, 713-742 https://doi.org/10.1122/1.551115
  13. Jendrejack, R.M., D.C. Schwartz, J.J. de Pablo and M.D. Graham, 2004, Shear-induced migration in flowing polymer solutions: Simulation of long-chain DNA in microchannels, J. Chem. Phys. 120, 2513-2529 https://doi.org/10.1063/1.1637331
  14. Jeon, J. and M.-S. Chun, 2007, Structure of flexible and semiflexible polyelectrolyte chains in confined spaces of slit micro/ nanochannels, J. Chem. Phys. 126, 154904/1-10
  15. Jian, H., A.V. Vologodskii and T. Schlick, 1997, A combined wormlike-chain and bead model for dynamic simulations of long linear DNA, J. Comput. Phys. 136, 168-179 https://doi.org/10.1006/jcph.1997.5765
  16. Jo, K., D.M. Dhingra, T. Odijk, J.J. de Pablo, M.D. Graham, R. Runnheim, D. Forrest and D.C. Schwartz, 2007, A single-molecule barcoding system using nanoslits for DNA analysis, Proc. Natl. Acad. Sci. U.S.A. 104, 2673-2678
  17. Manning, G.S., 1969, Limiting laws and counterion condensation in polyelectrolyte solutions: I. Colligative properties, J. Chem. Phys. 51, 924-933 https://doi.org/10.1063/1.1672157
  18. Odijk, T., 1983, On the statistics and dynamics of confined or entangled stiff polymers, Macromolecules 16, 1340-1344 https://doi.org/10.1021/ma00242a015
  19. Ottinger, H.C., 1996, Stochastic Processes in Polymeric Fluids: Tools and Examples for Developing Simulation Algorithms, Springer, Heidelberg
  20. Paradossi, G. and D.A. Brant, 1982, Light scattering study of a series of xanthan fractions in aqueous solution, Macromolecules 15, 874-879 https://doi.org/10.1021/ma00231a035
  21. Rotne, J. and S. Prager, 1969, Variational treatment of hydrodynamic interaction in polymers, J. Chem. Phys. 50, 4831-4837 https://doi.org/10.1063/1.1670977
  22. Russel, W.B., D.A. Saville and W.R. Schowalter, 1989, Colloidal Dispersions, Cambridge University Press, Cambridge
  23. Sato, T., T. Norisuye and H. Fujita, 1984, Double-stranded helix of xanthan: Dimensional and hydrodynamic properties in 0.1 M aqueous sodium chloride, Macromolecules 17, 2696-2700 https://doi.org/10.1021/ma00142a043
  24. Sho, T., T. Sato and T. Norisuye, 1986, Viscosity behavior and persistence length of sodium xanthan in aqueous sodium chloride, Biophys. Chem. 25, 307-313 https://doi.org/10.1016/0301-4622(86)80023-0
  25. Tran-Canh, D. and T. Tran-Cong, 2004, Element-free simulation of dilute polymeric flows using Brownian Configuration Fields, Korea-Australia Rheology J. 16, 1-15
  26. van Vliet, J.H. and G. ten Brinke, 1990, Orientation and shape of flexible polymers in a slit, J. Chem. Phys. 93, 1436-1441 https://doi.org/10.1063/1.459153
  27. Wang, Y. and I. Teraoka, 2000, Structures and thermodynamics of nondilute polymer solutions confined between parallel plates, Macromolecules 33, 3478-3484 https://doi.org/10.1021/ma991856v
  28. Warner, H.R., Jr., 1972, Kinetic theory and rheology of dilute suspensions of finitely extendible dumbbells, Ind. Eng. Chem. Fund. 11, 379-387 https://doi.org/10.1021/i160043a017