DOI QR코드

DOI QR Code

Molecular Dynamics Study on Atomistic Details of the Melting of Solid Argon

  • Han, Joo-Hwan (School of Materials Science and Engneering, Yeungnam University)
  • Published : 2007.08.31

Abstract

The atomic scale details of the melting of solid argon were monitored with the aid of molecular dynamics simulations. The potential energy distribution is substantially disturbed by an increase in the interatomic distance and the random of set distance from the lattice points, with increasing temperature. The potential energy barriers between the lattice points decrease in magnitude with the temperature. Eventually, at the melting point, these barriers can be overcome by atoms that are excited with the entropy gain acquired when the atoms obtain rotational freedom in their atomic motion, and the rotational freedom leads to the collapse of the crystal structure. Furthermore, it was found that the surface of crystals plays an important role in the melting process: the surface eliminates the barrier for the nucleation of the liquid phase and facilitates the melting process. Moreover, the atomic structure of the surface varies with increasing temperature, first via surface roughening and then, before the bulk melts, via surface melting.

References

  1. S. Sorkin, 'Point Defects, Lattice Structure and Melting,' MS in Physics Thesis, Israel Institute of Technology, Hifa, 2005
  2. S. R. Phillpot, S. Yip, and D. Wolf, 'How Do Crystals Melt?,' Computers in Physics, Nov/Dec 20-31 (1989)
  3. M. Ross, 'Generalized Lindemann Melting Law,' Phys. Rev., 184 [1] 233-42 (1969) https://doi.org/10.1103/PhysRev.184.233
  4. K. F. Herzfeld and M. G. Mayer, 'On the Theory of Fusion,' Phys. Rev., 46 995-1001 (1934) https://doi.org/10.1103/PhysRev.46.995
  5. M. Born, 'Thermodynamics of Crystals and Melting,' J. Chem. Phys., 7 591-603 (1939) https://doi.org/10.1063/1.1750497
  6. J. L. Tallon, W. H. Robinson, and S. I. Smedley, 'A Melting Criterion Based on the Dilation Dependence of Shear Moduli,' Nature, 266 [24] 337-38 (1977) https://doi.org/10.1038/266337a0
  7. R. W. Cahn, 'Melting from within,' Nature, 413 [11] 582- 83 (2001) https://doi.org/10.1038/35098169
  8. R. W. Cahn, 'Crystal Defects and Melting,' Nature, 273 [15] 491-92 (1978)
  9. L. Gomez, A. Dobry, Ch. Geuting, H. T. Diep, and L. Burakovsky, 'Dislocation Lines as the Precursor of the Melting of Crystalline Solids Observed in Mote Carlo Simulations,' Phys. Rev. Lett., 90 [9] 095701-1-4 (2003) https://doi.org/10.1103/PhysRevLett.90.095701
  10. R. A. Quinn and G. Goree, 'Experimental Test of Two- Dimensional Melting through Disclination Unbinding,' Phys. Rev. E, 64 051404-1-10 (2001) https://doi.org/10.1103/PhysRevE.64.051404
  11. H. Kleinert and Y. Jiang, 'Defect Melting Models for Cubic Lattices and Universal Laws for Melting Temperatures,' Physics Letters A, 313 [1] 152-57 (2003) https://doi.org/10.1016/S0375-9601(03)00730-8
  12. J. H. Jin, P. Gumbsch, K. Lu, and E. Ma, 'Melting Mechanisms at the Limit of Superheating,' Phys. Rev. Lett., 87 [5] 055703-1-4 (2001) https://doi.org/10.1103/PhysRevLett.87.055703
  13. S. Nose and F. Yonezawa, 'Isothermal-Isobaric Computer Simulations of Melting and Crystallization of a Lennard- Jones System,' J. Chem. Phys., 84 [3] 1803-14 (1986) https://doi.org/10.1063/1.450427
  14. R. G. D. Valle and E. Venuti, 'Quasi Harmonic Lattice Dynamics and Molecular Dynamics Calculations for the Lennard-Jones Solids,' Phys. Rev. B, 58 206-12 (1998) https://doi.org/10.1103/PhysRevB.58.206
  15. F. Shimizu, H. Kimizuka, H. Kaburaki, J. Li, and S. Yip, 'Parallel Molecular Dynamics Simulation on Elastic Properties of Solid Argon,' Proceedings of the Fourth International Conference on Supercomputing in Nuclear Applications, September 4-7, Tokyo, Japan, 2000
  16. L. Pietronero and E. Tosatti, 'Surface Theory of Melting,' Solid State Communications, 32 255-59 (1979) https://doi.org/10.1016/0038-1098(79)90133-9
  17. R. W. Cahn, 'Melting and the Surface,' Nature, 323 [23] 668-69 (1986) https://doi.org/10.1038/323668a0
  18. J. W. M. Frenken and J. F. van der Veen, 'Observation of Surface Melting,' Phys. Rev. Lett., 54 [2] 134-37 (1985) https://doi.org/10.1103/PhysRevLett.54.134
  19. R. M. Goodman and G. A. Somorjai, 'Low-Energy Electron Diffraction Studies of Surface Melting and Freezing of Lead, Bismuth, and Tin Single-Crystal Surfaces,' J. Chem. Phys., 52 [12] 6325-31 (1970) https://doi.org/10.1063/1.1672946
  20. J. F. van der Veen, 'Melting and Freezing at Surfaces,' Surface Science, 433-435 1-11 (1999) https://doi.org/10.1016/S0039-6028(99)00084-9
  21. R. M. Cotterill, E. J. Jensen, and W. D. Kristensen, 'Melting: Theories and Recent Computer Simulations' pp.405- 39 in Anharmonic Lattices Structural Transitions and Melting. Ed. By T. Riste, Noordhoff International Publishing, a division of A. W. Sijthoff International Publishing Company, Netherlands, 1974
  22. Y. Zhou and X. Jin, 'The Analytical Theory of Bulk Melting II: Variational Method Solution in the FCC Crystal,' arXiv:cond-mat/0405488 (2004)
  23. G. Borelius, 'Changes of State of Simple Solid and Liquid Metals,' Solid State Phys., 6 65-94 (1958) https://doi.org/10.1016/S0081-1947(08)60725-0
  24. A. R. Ubbelohde (Ed.), Melting and Crystal Structure, pp.88-134, Oxford University Press, Oxford, England, 1965
  25. J.-H. Han and D.-Y. Kim, 'Models of Melting and Liquid Structure Based on Rotationally Free Atomic Clusters,' Acta Materialia, 51 5439-45 (2003) https://doi.org/10.1016/S1359-6454(03)00410-5