DOI QR코드

DOI QR Code

Cracked-Healing and Elevated Temperature Bending Strength of Al2O3 Composite Ceramics by an Amount of Y2O3

Y2O3 첨가량에 의한 Al2O3 복합재 세라믹스의 균열 치유와 고온 굴힘강도 특성

  • Published : 2007.11.01

Abstract

The low kinds of $Al_2O_3$ composite ceramics were prepared using a mixture of 85 wt.% $Al_2O_3$ (mean size $0.5\;{\mu}m$), 15 wt.% SiC Powder with $Y_2O_3$, as an additive powder (0, 1, 3 and 5 wt.%). The crack-healing strengths were studied as functions of crack-healing temperature and amount of $Y_2O_3$. The in-situ crack-healing behavior was observed at 1,573 K for 1 h in the air. The heat treated specimen with 3 wt.% of $Y_2O_3$ showed better crack-healing ability than specimen with 1 or 5 wt.% of $Y_2O_3$. In case of specimen with 3 wt.% of $Y_2O_3$, the bending strength of the crack-healed specimen at 1,473 K was recovered to the bending strength of smooth specimen treated at 1573 K. The heat-resistance limit temperature of $Al_2O_3$ composite ceramics was 1,073 K, 1,373 K, 873 K for the specimen with 1, 3, 5 wt.% of $Y_2O_3$.

Keywords

$Al_2O_3$ Composite Ceramics;In-situ Observation;Crack-healing;Elevated Temperature;Bending Strength

References

  1. Bjork, L. and Hermansson, L. A. G., 1989, 'Hot Isostatically Pressed Alumina Silicon Carbide Whisker Composites,' J. Am. Ceram. Soc., Vol. 72, pp. 1436-1438 https://doi.org/10.1111/j.1151-2916.1989.tb07668.x
  2. Iio, S., Watanabe, M., Matsubara, M. and Matsuo, Y., 1989, 'Mechanical Properties of Alumina/Silicon Carbide Whisker Composites,' J. Am. Ceram. Soc., Vol. 72, pp. 1880-1884 https://doi.org/10.1111/j.1151-2916.1989.tb05995.x
  3. Ishigaki, T., Sato, K. and Moriyoshi, Y., 1989, 'Pressureless Sintering of $TiC-Al_2O_3$ Composites,' J. Mater. Sci. Letter, Vol. 8, pp. 678-680 https://doi.org/10.1007/BF01730440
  4. Lee, H. W. and Sacks, M. D., 1990, 'Pressureless Sintering of SiC-Whisker-Reinforced $Al_2O_3$ Composites II-Effects of Sintering Additives and Green Body Infiltration,' J. Am. Ceram. Soc., Vol. 73, pp. 1894-1900 https://doi.org/10.1111/j.1151-2916.1990.tb05241.x
  5. Vasy, O., Sakka, Y. and Skorokhod, V. V., 2006, 'Nano-Blast Synthesis of Nano-size $CeO_2-Gd_2O_3$ Powders', J. Am. Ceram. Soc., Vol. 89, pp.1822-1826 https://doi.org/10.1111/j.1551-2916.2006.00967.x
  6. Kondo, H., Sekino, T., Tanaka, N., Nakayama, T., Kusunose, T. and Niihara, K., 2005, 'Mechanical and Magnetic Properties of Novel Yttria-Stabilized Tetragonal Zirconia/Ni Nanocomposite Prepared by the Modified Internal Reduction Method,' J. Am. Ceram. Soc., Vol. 88, 1468-1473 https://doi.org/10.1111/j.1551-2916.2005.00243.x
  7. Liu, N., Chao, S. and Huang, X., 2006, 'Effects of TiC/TiN Addition on the Microstructure and Mechanical Properties of Ultra-fine Grade Ti (C, N) .Ni Cermets,' Journal of the European Ceramic Society, Vol. 26, pp. 3861-3870 https://doi.org/10.1016/j.jeurceramsoc.2005.12.010
  8. Raddatz, O., Schneider, G. A., Mackens, W., Vob, H. and Claussen, N., 2000, 'Bridging Stresses and R-curves in Ceramic/metal Composites,' J. Eur. Ceram. Soc., Vol. 20, pp. 2261-2273 https://doi.org/10.1016/S0955-2219(00)00065-0
  9. Tanaka, H. and Iyi, N., 1995, 'Polytypes, Grain Growth, and Fracture Toughness of Metal Boride Particulate SiC Composites,' J. Am. Ceram. Soc., Vol. 78, pp. 1223-1229 https://doi.org/10.1111/j.1151-2916.1995.tb08473.x
  10. Bamba, N., Choa, Y. H., Sekino, T. and Niihara, K., 2003, 'Mechanical Properties and Microstructure for 3 mol% Yttria Doped Zirconia/silicon Carbide Nanocomposites,' J. Eur. Ceram. Soc., Vol. 23, pp. 773-780 https://doi.org/10.1016/S0955-2219(02)00168-1
  11. Mitamura, T., Kobayashi, H., Ishibashi, N. and Akiba, T., 1991, 'Effects of rare earth oxide addition on the sintering of mullite,' J. Ceram. Soc. Jpn., Vol. 99, pp. 351-356 https://doi.org/10.2109/jcersj.99.351
  12. Hwang, C. S. and Fang, D. Y., 1992, 'Effects of Y2O3 Addition on the Sinterability and Microstructure of Mullite (Part 1)-Phase Transformation and Sinterability,' J. Ceram. Soc. Jpn., Vol. 100, pp. 1159-1164 https://doi.org/10.2109/jcersj.100.1159
  13. Fang, D. Y. and Hwang, C. S., 1993, 'Effects of $Y_2O_3$ Addition on the Sinterability and Microstructure of Mullite (Part 2)-Crystallization of Liquid Phase and Grain Growth,' J. Ceram. Soc. Jpn., Vol. 101, pp. 331-335 https://doi.org/10.2109/jcersj.101.331
  14. Ando, K., Tsuji, K., Nakatani, M., Chu, M. C., Sato, S. and Kobayashi, Y., 2002, 'Effects of $Y_2O_3$ on Crack Healing Ability and High Temperature Strength of Structural Mullite,' J. Soc. Mater. Sci. Jpn., Vol. 51, pp. 458-464 https://doi.org/10.2472/jsms.51.458
  15. Lee, S. K., Ono, M., Nakao, W., Takahashi, K. and Ando, K., 2005, 'Crack-healing Behaviour of $Mullite/SiC/Y_2O_3$ Composites and Its Application to the Structural Integrity of Machined Components,' J. Eur. Ceram. Soc., Vol. 25, pp. 3495-3502 https://doi.org/10.1016/j.jeurceramsoc.2004.08.024
  16. Ando, K., Houjyou, K., Chu, M. C., Takeshita, S., Takahashi, K. and Sakamoto, S., 2002, 'Crack-healing Behavior of $Si_3N_4/SiC$ Ceramics Under Stress and Fatigue Strength at the Temperature of Healing $(1000^{\circ}C)$,' J. Eur. Ceram. Soc., Vol. 22, pp. 1339-1346 https://doi.org/10.1016/S0955-2219(01)00435-6
  17. Takahashi, K., Kim, B. S., Chu, M. C., Sato, S. and Ando, K. 2003, 'Crack Healing Behavior and Static Fatigue Strength of $Si_3N_4/SiC$ Ceramics Held Under Stress at Temperature (800, 900, $1000^{\circ}C$),' J. Eur. Ceram. Soc., Vol. 23, pp. 1971-1978 https://doi.org/10.1016/S0955-2219(02)00428-4
  18. Nakao, W., Ono, M., Lee, S. K., Takahashi, K. and Ando, K., 2003, 'Mechanical Properties of SiC Reinforced Alumina Composites Attached Crackhealing Ability,' In Proceedings of the 11th Materials and Processing Conference. The Japan Society of Mechanical Engineers, Tokyo, pp. 59-60
  19. Nam, K.W., Kim, M. K., Kim, H. S., Kim, J. W. and Ahn, S. H., 2006, 'Bending Strength of Si3N4 Monolithic and $Si_3N_4/SiC$ Composite Ceramics and Elastic Wave Characteristics by Wavelet Analysis,' International Journal of Modern Physics B, Vol. 20, No. 25-27, pp. 4279-4284 https://doi.org/10.1142/S0217979206041227
  20. Kim, M. K., Kang, S. B., Ahn, S. H. and Nam, K. W., 2007, 'Strength and Surface Morphology of $Si_3N_4$ Composite Ceramics Coated with $SiO_2$ Gel,' Solid State Phenomena, Vols. 124-126, pp. 719-722 https://doi.org/10.4028/www.scientific.net/SSP.124-126.719
  21. Kim, H. S., Kim, M. K., Kim, J. W., Ahn, S. H. and Nam, K. W., 2007, 'Strength of Crack Healed-Specimen and Elastic Wave Characteristics of $Al_2O_3/SiC$ Composite Ceramics,' Transactions of the KSME(A), Vol. 31, No. 4, pp. 425-431 https://doi.org/10.3795/KSME-A.2007.31.4.425
  22. Sacks, M. D., Lee, H. W. and Rojas, O. E., 1988, 'Suspension Processing of $Al_2O_3/SiC$ Whisker Composites,' J. Am. Ceram. Soc., Vol. 71, pp. 370-379 https://doi.org/10.1111/j.1151-2916.1988.tb05056.x
  23. Kim. Y. W. and Lee, J. G., 1991, 'Pressureless Sintering of $Al_2O_3-SiC$ Whisker Composites,' J. Mater. Sci., Vol. 26, pp. 1316-1320 https://doi.org/10.1007/BF00544471
  24. Faheem, Y. and Shoaib, M., 2006, 'Sol.Gel Processing and Characterization of Phase-Pure Lead Zirconate Titanate Nano-Powders,' J. Am. Ceram. Soc., Vol. 89, pp. 2034-2037 https://doi.org/10.1111/j.1551-2916.2006.01002.x
  25. Vasylkiv, O., Sakka, Y., Maeda, Y. and Skorokhod, V. V., 2004, 'Nano-engineering of Zirconia.noble Metals Composites,' J. Eur. Ceram. Soc., Vol. 24, pp. 469-473 https://doi.org/10.1016/S0955-2219(03)00204-8
  26. Vasylkiv, O., Sakka, Y. and Skorokhod, V. V., 2003, 'Low-Temperature Processing and Mechanical Properties of Zirconia and Zirconia-Alumina Nanoceramics,' J. Am. Ceram. Soc., Vol. 86, pp. 299-304 https://doi.org/10.1111/j.1151-2916.2003.tb00015.x
  27. She, J., Mechnich, P., Schmucker, M. and Schneider, H., 2002, 'Reaction Bonding Behavior of Mullite Ceramics with $Y_2O_3$ Addition,' J. Eur. Ceram. Soc., Vol. 22, pp. 323-328 https://doi.org/10.1016/S0955-2219(01)00288-6
  28. Ando, K., Takahashi, K., Nakayama, S. and Saito, S. 2002, 'Crack-healing Behavior of $Si_3N_4/SiC$ Ceramics Under Cyclic Stress and Resultant Fatigue Strength at the Healing Temperature,' J. Am. Ceram. Soc., Vol. 85, pp. 2268-2272 https://doi.org/10.1016/S0955-2219(01)00435-6
  29. Lee, S. K., Ishida, W., Lee, S. Y., Nam, K. W. and Ando, K., 2005, 'Crack-Healing Behavior and Resultant Strength Properties of Silicon Carbide Ceramic,' J. Eur. Ceram. Soc., Vol. 25, No. 5, pp. 569-576 https://doi.org/10.1016/j.jeurceramsoc.2004.01.021
  30. Kusunoki, M., Yonemitsu, K., Sasaki, Y. and Kubo, Y., 1993, 'In Situ Observation of Zirconia Particles at $1200^{\circ}C$ by High-Resolution Electron Microscopy,' J. Am. Ceram. Soc., Vol. 76, pp. 763-765 https://doi.org/10.1111/j.1151-2916.1993.tb03674.x

Cited by

  1. Determining Mechanical Properties of ZrO2 Composite Ceramics by Weibull Statistical Analysis vol.39, pp.10, 2015, https://doi.org/10.3795/KSME-A.2015.39.10.955
  2. Weibull Statistical Analysis on Mechanical Properties in ZrO2 with SiC Additive vol.39, pp.9, 2015, https://doi.org/10.3795/KSME-A.2015.39.9.901
  3. Composites Ceramics by Different Shot Size vol.40, pp.12, 2016, https://doi.org/10.3795/KSME-A.2016.40.12.987
  4. Mechanical Characteristics and Crack-Healing of ZIRCONIA(ZrO2) Composite Ceramics with SiC and TiO2 vol.40, pp.3, 2016, https://doi.org/10.3795/KSME-A.2016.40.3.267
  5. Colloidal vol.33, pp.7, 2009, https://doi.org/10.3795/KSME-A.2009.33.7.652
  6. Nano Colloidal Added vol.33, pp.11, 2009, https://doi.org/10.3795/KSME-A.2009.33.11.1233
  7. Bending Strength Properties of SiC Ceramics at Different Roughness Values of Polishing Plates vol.35, pp.7, 2011, https://doi.org/10.3795/KSME-A.2011.35.7.779