Journal of the Korean Society of Food Science and Nutrition (한국식품영양과학회지)
- Volume 36 Issue 10
- /
- Pages.1248-1256
- /
- 2007
- /
- 1226-3311(pISSN)
- /
- 2288-5978(eISSN)
DOI QR Code
Isoflavone-Rich Bean Sprouts Improves Hyperlipidemia
고이소플라본 콩나물의 고지혈증 개선효과
- Kim, Youn-Hee (Department of Food Science and Nutrition, Kyungpook National University) ;
- Lee, Ji-Hye (Department of Food Science and Nutrition, Kyungpook National University) ;
- Koo, Bo-Kyung (Department of Food Science and Nutrition, Kyungpook National University) ;
- Lee, Hye-Sung (Department of Food Science and Nutrition, Kyungpook National University)
- Published : 2007.10.30
Abstract
The present study examined the physiological effects of isoflavone-rich bean sprout on the lipid metabolism of hyperlipidemic rats. Experimental hyperlipidemia was induced by the AIN standard diet with 0.5% cholesterol,9.3% lard and 0.2% sodium cholate in SD rats. Experimental groups consisted of normal control, hyperlipidemic control, 1% or 5% bean sprout powder-supplemented groups, and 0.2% soybean isoflauone extract-supplemented group. Four weeks feeding of isoflavone-rich bean sprout powder or isoflavone extract resulted in a significant lowering of plasma cholesterol and lowering tendency of triglyceride levels. The levels of lipid peroxidation products in the kidney and heart tissues were also lowered by the supplementation of bean sprout powder or isoflavone extract. The activities of hepatic glutathione peroxidase and catalase were increased by the supplementation of bean sprout powder or soybean isoflavone extract. Plasma concentration of vitamin A was significantly raised in the group fed 0.5% bean sprout powder. The results of the study showed that the beneficial effects of isoflavone-rich bean sprout on lipid metabolism of hyperlipidemic animals were comparable with those of soybean isoflavone extract. The positive effect of bean sprout in improving lipid metabolism might be due to the combined action of isoflavone and dietary fiber.
File
References
- National Annual Food Supply Data. 2007. Korea Rural Economic Institute
- Annual report on the cause of death statistics. 2005. National Statistics Office
- JAMA. 1993. Summary of the second report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults 269: 3015-3023
- Balmir F, Staack R, Jeffrey E. 1996. An extract of soy flour influences serum cholesterol and thyroid hormones in rats and hamsters. J Nutr 126: 3046-3053
- Anthony MS, Clarkson TB, Bullock BC, Wagner JD. 1997. Soy protein versus soy phytoestrogens in the prevention of diet-induced coronary artery atherosclerosis of male cynomolgus monkeys. Arterioscler Thromb Vasc Biol 17: 2524-2531 https://doi.org/10.1161/01.ATV.17.11.2524
- Tovar-Palacio C, Potter SM, Hafermann JC, Shay NF. 1998. Intake of soy protein and soy protein extracts influences lipid metabolism and hepatic gene espression in gerbils. J Nutr 128: 839-842
- Anthony MS, Clarkson TB, Williams JK. 1998. Effects of soy isoflavones on atherosclerosis: potential mechanisms. Am J Clin Nutr 68: 1390s-1393s https://doi.org/10.1093/ajcn/68.6.1390S
- Cassidy A, Griffin B. 1999. Phyto-oestrogens: a potential role in the prevention of CHD. Proc Nutr Soc 58: 193-199 https://doi.org/10.1079/PNS19990025
- Kirk EA, Sutherland P, Wang SA, Chait A, LeBoeuf RC. 1998. Dietary isoflavones reduce plasma cholesterol and atherosclerosis in C57BL/6 mice but not LDL receptor-deficient mice. J Nutr 128: 954-959
- Ruiz-Larrea MB, Mohan A, Miller NJ, Bolwell GP, Rice-Evans CA. 1997. Antioxidant activity of phytoestrogenic isoflavones. Free Radic Res 26: 63-70 https://doi.org/10.3109/10715769709097785
- Arora A, Byrem TM, Nair MG, Strasburg GM. 2000. Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids. Arch Biochem Biophys 373: 102-109 https://doi.org/10.1006/abbi.1999.1525
- Lehtonen JA, Adlercreutzn H, Kinnunen PKJ. 1996. Binding of daidzein to liposomes. Biochem Biophys Acta 1285: 91-100 https://doi.org/10.1016/S0005-2736(96)00154-X
- Hodgson JM, Croft KD, Puddey IB, Mori TA, Beilin LJ. 1996. Soybean isoflavonoids and their metabolic procucts inhibit in vitro lipoprotein oxidation in serum. J Nutr Biochem 7: 664-669 https://doi.org/10.1016/S0955-2863(96)00133-7
- Yamakoshi J, Piskula MK, Izumi T, Tobe K, Saito M, Kataoka S, Obata A, Kikuchi M. 2000. Isoflavone aglycone-rich extract without soy protein attenuates atherosclerosis development in cholesterol-fed rabbits. J Nutr 130: 1887-1893
- Kapiotis S, Hermann M, Held I, Seelos C, Ehringer H, Gmeiner BMK. 1997. Genistein, the dietary-derived angiogenesis inhibitor, prevents LDL oxidation and protects endothelial cells from damage by atherogenic LDL. Arterioscler Thromb Vasc Biol 17: 2868-2874 https://doi.org/10.1161/01.ATV.17.11.2868
- Tikkanen MJ, Wahala K, Ojala S, Vihma V, Adlercreutz H. 1998. Effect of soybean phytoestrogen intake on low density lipoprotein oxidation resistance. Proc Natl Acad Sci U S A 95: 3106-3110 https://doi.org/10.1073/pnas.95.6.3106
- Tikkanen MJ, Adkerceutz H. 2000. Dietary soy-derived isoflavone phytoestrogens. Could they have a role in coronary heart disease prevention? Biochem Pharmacol 60: 1-5 https://doi.org/10.1016/S0006-2952(99)00409-8
- Baum JA, Teng H, Erdman JW Jr, Weigel RM, Klein BP, Persky VW, Freels S, Surya P, Bakhit RM, Ramos E, Shay NF, Potter SM. 1998. Long-term intake of soy protein improves blood lipid profiles and increases mononuclear cell low-density-lipoprotein receptor messenger RNA in hypercholesterolemic, postmenopausal women. Am J Clin Nutr 68: 545-551 https://doi.org/10.1093/ajcn/68.3.545
- Kim YH, Hwang YH, Lee HS. 2003. Analysis of isoflavones for 66 varieties of spout beans and bean sporouts. Kor J Food Sci Tech 35: 568-575
- Lee SK, Lee MJ, Yoon S, Kwon DJ. 2000. Estimaterd isoflavone intake from soy products in Korean middle-aged woman. J Korean Soc Food Sci Nutr 29: 948-956
- Prosky L, Asp NG, Schweizer TF, Devries JW, Furda I. 1988. Determination of insoluble, soluble and total dietary fiber in foods and food products: Interlaboratory study. J Assoc Off Anal Chem 71: 1017-1023
- Bucolo G, David H. 1973. Quantitative determination of serum triglycerides by use of enzymes. Clin Chem 19: 476-482
- Allain CC, Poon LS, Chen CS, Richmond W. 1974. Enzymatic determination of total serum cholesterol. Clin Chem 20: 470-475
- Finley PR, Schifman RB, Williams RJ, Luchti DA. 1978. Cholesterol in high-density lipoprotein: Use of mg2+/dextran sulfate in its measurement. Clin Chem 24: 931-933
- Tarladgis BG, Pearson AM, Duan LR. 1964. Chemistry of the 2-thiobarbituric acid test for determination of oxidative rancidity in foods. J Sci Food Agri 15: 602-607 https://doi.org/10.1002/jsfa.2740150904
- Uchiyama M, Mihara M. 1978. Determination of malondialdehyde precursor in tissues by TBA test. Anal Biochem 86: 271-278 https://doi.org/10.1016/0003-2697(78)90342-1
- Marklund S, Marklund G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 469-474 https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
- Abei H. 1974. Catalase. In Method of Enzymatic Analysis. Academic Press, New York. Vol 2, p 673-684
- Paglia PE, Valentine WN. 1967. Studies on quantitative and qualitative characterization of erythrocyte glutathione peroxidase. Lab Clin Med 70: 158-169
- Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
- Bieri G, Toliver JJ, Catignani GL. 1979. Simultaneous determination of alpha-tocopherol and retinol in plasma or red blood cells by high pressure liquid chromatography. Am J Clin Nutr 32: 2143-2149 https://doi.org/10.1093/ajcn/32.10.2143
- Hair JF, Anderson RE, Tatham RL, Black WC. 1995. Mulivariate data analysis with readings. 4th ed. Preatice- Hall International Editions, USA
- Potter SM. 1996. Soy protein and serum lipids. Curr Opin Lipidol 7: 260-264 https://doi.org/10.1097/00041433-199608000-00013
- Lichtenstein AH. 1998. Soy protein, isoflavones and cardiovascular disease risk. J Nutr 128: 1589-1592
- Zhan S, Ho SC. 2005. Meta-analysis of the effects of soy protein containing isoflavones on the lipid profile. Am J Clin Nutr 81: 397-408 https://doi.org/10.1093/ajcn.81.2.397
- Anderson JW, Johnstone BM, Cook-Newell ME. 1995. Meta-analysis of the effects of soy protein intake on serum lipids. N Engl J Med 333: 276-282 https://doi.org/10.1056/NEJM199508033330502
- Hall WL, Vafeisdou K, Hallund J, Bugel S, Reimann M, Koebnick C, Zunft HJF, Ferrari M, Branca F, Talbot D, Powell J, Minihane AM, Cassidy A, Nilsson M, Dahlman-Wright K, Gustafsson JA, Williams CM. 2006. Soy-isoflavone-enriched foods and markers of lipid and glucose metabolism in postmenopausal woman: interactions with genotype and equol production. Am J Clin Nutr 83: 592- 600 https://doi.org/10.1093/ajcn.83.3.592
- Honore EK, Williams JK, Anthony MS, Clarkson TB. 1997. Soy isoflavones enhance coronary vascular reactivity in atherosclerotic female macaques. Feril Steril 67: 148-154 https://doi.org/10.1016/S0015-0282(97)81872-9
- Choi MK, Jun YS. 2006. A comparative study on isoflavone intakes and blood lipids between hypertensive and normotensive. Kor J Commun Nutr 11: 271-278
- Desroches S, Mauger JF, Ausman LM, Lichtenstein AH, Lamarche B. 2004. Soy protein flavorably affects LDL size independently of isoflavones in hypercholesterolemic men and women. J Nutr 134: 574-579
- Lin Y, Meijer GW, Vermeer MA, Trautwein EA. 2004. Soy protein enhances the cholesterol-lowering effect of plant sterol esters in cholesterol-fed hamsters. J Nutr 134: 143-148
- Wright SM, Salter AM. 1998. Effects of soy protein on plasma cholesterol and bile acid excretion in hamsters. Comp Biochem Physiol B Biochem Mol Biol 119: 247-254 https://doi.org/10.1016/S0305-0491(97)00288-5
- Forsythe WA. 1995. Soy protein, thyroid regulation and cholesterol metabolism. J Nutr 125: 619S-623S
- Sirtori CR, Lovati MR, Manzoni C, Monetti M, Pazzucconi F, Gatti E. 1995. Soy and cholesterol reduction. clinical experience. J Nutr 125: 598S-605S
- Pierro DD, Tavazzi B, Lazzarino G, Giardina B. 1992. Malondialdehyde is a biochemical marker of peroxidative damage in the isolated reperfused rat heart. Mol Cell Biochem 116: 193-196 https://doi.org/10.1007/BF01270587
- Addis PB, Waener GJ. 1991. Free radicals and food additives. Aruoma OI, Halliwell B, eds. Taylor and Francis, London, England. p 77
- Jurgens G, Lang J, Estwebauer H. 1986. Modification of human low-density lipoprotein by the lipid peroxidation product 4-hydroxynonenal. Biochem Biophys Acta 875: 103- 114 https://doi.org/10.1016/0005-2760(86)90016-0
- Xu R, Yokoyama WH, Irving D, Rein D, Walzem RL, German JB. 1998. Effect of dietary catechin and vitamin E on aortic fatty streak accumulation in hypercholesterolemic hamsters. Atherosclerosis 137: 29-36 https://doi.org/10.1016/S0021-9150(97)00248-7
- Lee YS. 2001. Effect of isoflavones on proliferation and oxidative stress of MC3T3-E1 osteoblast like cells. Korea Soybean Digest 18: 35-42
- Cai Q, Wei H. 1996. Effect of dietary genistein on antioxidant enzyme activities in SENCAR mice. Nutr Cancer 25: 1-7 https://doi.org/10.1080/01635589609514423
- Urano S, Midori HH, Tochihi N, Matsue M, Shiraki M, Ito H. 1991. Vitamin E and the susceptibility of erythrocytes and reconstituted liposomes to oxidative stress in aged diabetics. Lipids 26: 58-61 https://doi.org/10.1007/BF02544025
Cited by
- Hepatoprotective Effects of Soybean Embryo by Enhancing Adiponectin-Mediated AMP-Activated Protein KinaseαPathway in High-Fat and High-Cholesterol Diet-Induced Nonalcoholic Fatty Liver Disease vol.19, pp.6, 2016, https://doi.org/10.1089/jmf.2015.3604
- Effect of the Plants Mixture and Garlic Composition on Serum Lipid Level of Hypercholesterolemic Rats vol.20, pp.3, 2010, https://doi.org/10.5352/JLS.2010.20.3.396
- Effects of the Soybean Powder with Rich Aglycone Isoflavone on Lipid Metabolism and Antioxidative Activities in Hyperlipidemic Rats vol.37, pp.3, 2008, https://doi.org/10.3746/jkfn.2008.37.3.302
- Effects of Portulaca oleracea Powder on the Lipid Levels of Rats Fed a Hypercholesterolemia Inducing Diet vol.16, pp.3, 2011, https://doi.org/10.3746/jfn.2011.16.3.202
- Effect of Tofu Manufactured from Lipoxygenase-free Genotypes Soybean on the Fecal Lipid Level and Hepatic Antioxidant Enzyme Activity in Rat Fed a High Fat-cholesterol Diet vol.49, pp.1, 2015, https://doi.org/10.14397/jals.2015.49.1.175
- Changes in the Nutritional Compositions of Soybean Sprouts Cultivated with Bamboo Ash vol.31, pp.3, 2016, https://doi.org/10.7318/KJFC/2016.31.3.213