In vitro Anti-inflammatory Activity of the Artemisia fukudo Extracts in Murine Macrophage RAW 264.7 Cells

큰비쑥(Artemisia fukudo) 추출물의 murine macrophage RAW 264.7 세포에서 in vitro 항염효과

  • Yoon, Weon-Jong (Jeju Biodiversity Research Institute, Jeju Hi-Tech Industry Development Institute) ;
  • Lee, Jung-A (Jeju Biodiversity Research Institute, Jeju Hi-Tech Industry Development Institute) ;
  • Kim, Kil-Nam (Jeju Biodiversity Research Institute, Jeju Hi-Tech Industry Development Institute) ;
  • Kim, Ji-Young (Jeju Biodiversity Research Institute, Jeju Hi-Tech Industry Development Institute) ;
  • Park, Soo-Yeong (Jeju Biodiversity Research Institute, Jeju Hi-Tech Industry Development Institute)
  • 윤원종 ((재)제주하이테크산업진흥원 제주생물종다양성연구소) ;
  • 이정아 ((재)제주하이테크산업진흥원 제주생물종다양성연구소) ;
  • 김길남 ((재)제주하이테크산업진흥원 제주생물종다양성연구소) ;
  • 김지영 ((재)제주하이테크산업진흥원 제주생물종다양성연구소) ;
  • 박수영 ((재)제주하이테크산업진흥원 제주생물종다양성연구소)
  • Published : 2007.08.31


The present study describes the preliminary evaluation of the anti-inflammatory activities of Artemisia fukudo extracts. The 80% ethanol extract of A. fukudo was sequentially fractionated with n-hexane, dichloromethane, ethylacetate, and butanol. In order to effectively screen for anti-inflammatory agents, we first examined the extracts’ inhibitory effects on the production of pro-inflammatory cytokines activated with lipopolysaccharide. Moreover, we examined the inhibitory effects of the A. fukudo extracts on pro-inflammatory factors (NO, iNOS, COX-2, and $PGE_{2}$) in murine macrophage RAW 264.7 cells. The protein levels were determined by immunoblotting. Of the sequential solvent fractions, the n-hexane and dichloromethane fractions inhibited the mRNA expression of pro-inflammatory cytokines (TNF-${\alpha}$, IL-$1{\beta}$, and IL-6), production of NO and $PGE_{2}$, and the protein levels of iNOS and COX-2. These results suggest that A. fukudo may have signifIcant effects on inflammatory factors, and may be a potential anti-inflammatory therapeutic plant.


  1. Yoon WJ, Lee JA, Kim JY, Oh DJ, Jung YH, Lee WJ, Park SY. Anti-oxidant activities and anti-inflammatory effects on Artemisia scoparia. Korean J. Pharmacogn. 37: 235-240 (2006)
  2. Lee TB. llustrated Flora of Korea. Hyangmoon Publishing Co., Seoul, Korea p.757 (1979)
  3. Lyons CR, Orloff GJ, Cunningham JM. Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. J. Biol. Chem. 267: 6370-6374 (1992)
  4. Geller DA, Lowenstein CJ, Shapiro RA, Nussler AK, Disilvio M, Wang SC, Nakayama DK, Simmons RL, Snyder SH, Billiar TR. Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes. P. Natl. Acad. Sci. USA 90: 3491-3495 (1993)
  5. Galea E, Feinstein DL, Reis DJ. Induction of calcium-independent nitric oxide synthase activity in primary rat glial cultures. P. Natl. Acad. Sci. USA 89: 10945-10949 (1992)
  6. Burrell R. Human responses to bacterial endotoxin. Circ. Shock 43: 137-153 (1994)
  7. Willeaume V, Kruys V, Mijatovic T, Huez G. Tumor necrosis factor- alpha production induced by viruses and by lipopolysaccharides in macrophages: similarities and differences. J. Inflamm. 46: 1-12 (1995-1996)
  8. Santos-Gomes PC, Seabra RM, Andrade PB, Fernandes-Ferreira M. Determination of phenolic antioxidant compounds produced by calli and cell suspensions of sage (Salvia officinalis L.). J. Plant Physiol. 160: 1025-1032 (2003)
  9. Kim RG, Shin KM, Chun SK, Ji SY, Seo SH, Park HJ, Choi JW, Lee KT. In vitro antiinflammatory activity of the essential oil from Ligularia fischeri var. spiciformis in murine macrophage RAW 264.7 cells. Yakhak Hoeji 46: 343-347 (2002)
  10. McDaniel ML, Kwon G, Hill JR, Marshall CA, Corbett JA. Cytokines and nitric oxide in islet inflammation and diabetes. P. Soc. Exp. Biol. Med. 211: 24-32 (1996)
  11. Weisz A, Cicatiello L, Esumi H. Regulation of the mouse inducible- type nitric oxide synthase gene promoter by interferon-${\gamma}$ , bacterial lipopolysaccharide, and $N^G$-monomethyl-L-arginine. Biochem. J. 316: 209-215 (1996)
  12. Tan RX, Zheng WF, Tang HQ. Biologically active substances from the genus Artemisia. Planta Med. 64: 295-302 (1998)
  13. Seibert K, Zhang Y, Leahy K, Hauser S, Masferrer J, Perkins W, Lee L, Isakson P. Pharmacological and biochemical demonstration of the role of cyclooxygenase-2 in inflammation and pain. P. Natl. Acad. Sci. USA 91: 12013-12017 (1994)
  14. Kim JY, Jung KS, Jeong HG. Suppressive effects of the kahweol and cafestol on cyclooxygenase-2 expression in macrophages. FEBS Lett. 569: 321-326 (2004)
  15. Wakefield PE, James WD, Samlaska CP, Mettzer MS. Tumor necrosis factor. J. Am. Acad. Dermatol. 24: 675-685 (1991)
  16. Tezuka Y, Irikawa S, Kaneko T, Banskota AH, Nagaoka T, Xiong Q, Hase K, Kadota S. Screening of Chinese herbal drug extracts for inhibitory activity on nitric oxide production and identification of an active compound of Zanthoxylum bugeanum. J. Ethnopharmacol. 77: 209-217 (2001)
  17. Willoughby DA. Heberden Oration, 1974. Human arthritis applied to animal models. Towards a better therapy. Ann. Rheum. Dis. 34: 471-478 (1975)
  18. Nathan C, Xie QW. Nitric oxide synthases: roles, tolls and controls. Cell 78: 915-918 (1994)
  19. Piguet PF, Grau GE, Houser C, Vassalli P. Tumor necrosis factor is a critical mediators in hapten induced irritant and contact hypersensitivity reaction. J. Exp. Med. 173: 673-679 (1991)
  20. Mu MM, Chakravortty D, Sugiyama T, Koide N, Takahashi K, Mori I, Yoshida T, Yokochi T. The inhibitory action of quercetin on lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophage cells. J. Endotoxin. Res. 7: 431-438 (2001)
  21. Funk CD, Frunk LB, Kennedy ME, Pong AS. Fitzgerald GA. Human platelet/erythroleukemia cell prostaglandin G/H synthase: cDNA cloning, expression, and gene chromosomal assignment. FASEB J. 5: 2304-2312 (1991)
  22. Tizard IR. Immunology: An introduction inflammation. 2nd ed., Saunders College Publishing, New York, NY, USA pp. 423-441 (1986)
  23. Rockey DC, Chung JJ, McKee CM, Noble PW. Stimulation of inducible nitric oxide synthase in rat liver by hyaluronan fragments. Hepatology 27: 86-92. (1998)
  24. Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43: 109-142 (1991)
  25. Ryu JH, Ahn H, Kim JY, Kim YK. Inhibitory activity of plant extracts on nitric oxide synthesis in LPS-activated macrophage. Phytother. Res. 17: 485-489 (2003)
  26. Dinarello CA. Pro-inflammatory cytokines. Chest 118: 503-508 (2000)
  27. Liu RH, Hotchkiss JH. Potential genotoxicity of chronically elevated nitric oxide. Mutat. Res. 339: 73-89 (1995)
  28. Higuchi M, Hisgahi N, Taki H, Osawa T. Cytolytic mechanisms of activated macrophages. Tumor necrosis factor and L-argininedependent mechanisms act synergistically as the major cytolytic mechanisms of activated macrophages. J. Immunol. 144: 1425- 1431 (1990)
  29. Nunokawa Y, Ishida N, Tanaka S. Cloning of inducible nitric oxide synthase in rat vascular smooth muscle cells. Biochem. Bioph. Res. Co. 191: 89-94 (1993)