큰비쑥(Artemisia fukudo) 추출물의 murine macrophage RAW 264.7 세포에서 in vitro 항염효과

In vitro Anti-inflammatory Activity of the Artemisia fukudo Extracts in Murine Macrophage RAW 264.7 Cells

  • 윤원종 ((재)제주하이테크산업진흥원 제주생물종다양성연구소) ;
  • 이정아 ((재)제주하이테크산업진흥원 제주생물종다양성연구소) ;
  • 김길남 ((재)제주하이테크산업진흥원 제주생물종다양성연구소) ;
  • 김지영 ((재)제주하이테크산업진흥원 제주생물종다양성연구소) ;
  • 박수영 ((재)제주하이테크산업진흥원 제주생물종다양성연구소)
  • Yoon, Weon-Jong (Jeju Biodiversity Research Institute, Jeju Hi-Tech Industry Development Institute) ;
  • Lee, Jung-A (Jeju Biodiversity Research Institute, Jeju Hi-Tech Industry Development Institute) ;
  • Kim, Kil-Nam (Jeju Biodiversity Research Institute, Jeju Hi-Tech Industry Development Institute) ;
  • Kim, Ji-Young (Jeju Biodiversity Research Institute, Jeju Hi-Tech Industry Development Institute) ;
  • Park, Soo-Yeong (Jeju Biodiversity Research Institute, Jeju Hi-Tech Industry Development Institute)
  • 발행 : 2007.08.31

초록

본 연구는 쑥 추출물의 항염 활성이 prostaglandins 합성의 저해 및 pro-inflammatory cytokine의 억제기전과 관련이 있을 것으로 예상되어짐에 따라, 큰비쑥(A. fukudo)을 대상으로 80% EtOH로 추출하고 추출물을 극성에 따라 용매분획을 실시하여, 큰비쑥 에탄올 추출물 및 용매분획물들이 염증반응의 주체가 되는 대식 세포 계열인 RAW 264.7 세포에서 LPS 로 유도된 TNF-${\alpha}$, IL-$1{\beta}$ 그리고 IL-6와 같은 pro-inflammatory cytokine과 NO의 생성억제효과, 그리고 iNOS와 COX-2의 단백질 발현 억제효과 및 $PGE_{2}$ 생성 억제효과 등을 통해 알아보았다. 대식세포 계열인 RAW 264.7 세포에 LPS로 자극을 주고 큰비쑥 추출물을 처리하여 확인해본 결과, 추출물 및 분획물들이 다소 차이는 있었지만 TNF-${\alpha}$, IL-$1{\beta}$ 그리고 IL-6에서 생성억제 효과를 나타났다. 또한 헥산, 디클로로메탄 및 에틸아세테이트 분획물에서 NO의 생성억제 효과가 강하게 나타났으며, 헥산과 디클로로메탄 분획물에서는 iNOS, COX-2 및 $PGE_{2}$ 생성 억제 효과가 다른 분획물에 비해 강하게 나타났다. 이러한 결과는 큰비쑥에서 유효성분 추출을 통한 항염증 물질의 연구 또는 예방하거나 치료할 수 있는 염증 억제 성분의 분리 및 그 작용기전 연구에 중요한 기초 자료가 될 것이라 사료된다. 또한 큰비쑥 추출물로부터 염증억제 성분을 도출하고자 활성분획인 헥산과 디클로로메탄 분획물에 대하여 활성성분의 분리가 진행 중이다.

참고문헌

  1. Yoon WJ, Lee JA, Kim JY, Oh DJ, Jung YH, Lee WJ, Park SY. Anti-oxidant activities and anti-inflammatory effects on Artemisia scoparia. Korean J. Pharmacogn. 37: 235-240 (2006)
  2. Lee TB. llustrated Flora of Korea. Hyangmoon Publishing Co., Seoul, Korea p.757 (1979)
  3. Lyons CR, Orloff GJ, Cunningham JM. Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. J. Biol. Chem. 267: 6370-6374 (1992)
  4. Geller DA, Lowenstein CJ, Shapiro RA, Nussler AK, Disilvio M, Wang SC, Nakayama DK, Simmons RL, Snyder SH, Billiar TR. Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes. P. Natl. Acad. Sci. USA 90: 3491-3495 (1993) https://doi.org/10.1073/pnas.90.8.3491
  5. Galea E, Feinstein DL, Reis DJ. Induction of calcium-independent nitric oxide synthase activity in primary rat glial cultures. P. Natl. Acad. Sci. USA 89: 10945-10949 (1992) https://doi.org/10.1073/pnas.89.22.10945
  6. Burrell R. Human responses to bacterial endotoxin. Circ. Shock 43: 137-153 (1994)
  7. Willeaume V, Kruys V, Mijatovic T, Huez G. Tumor necrosis factor- alpha production induced by viruses and by lipopolysaccharides in macrophages: similarities and differences. J. Inflamm. 46: 1-12 (1995-1996)
  8. Santos-Gomes PC, Seabra RM, Andrade PB, Fernandes-Ferreira M. Determination of phenolic antioxidant compounds produced by calli and cell suspensions of sage (Salvia officinalis L.). J. Plant Physiol. 160: 1025-1032 (2003) https://doi.org/10.1078/0176-1617-00831
  9. Kim RG, Shin KM, Chun SK, Ji SY, Seo SH, Park HJ, Choi JW, Lee KT. In vitro antiinflammatory activity of the essential oil from Ligularia fischeri var. spiciformis in murine macrophage RAW 264.7 cells. Yakhak Hoeji 46: 343-347 (2002)
  10. McDaniel ML, Kwon G, Hill JR, Marshall CA, Corbett JA. Cytokines and nitric oxide in islet inflammation and diabetes. P. Soc. Exp. Biol. Med. 211: 24-32 (1996) https://doi.org/10.3181/00379727-211-43950D
  11. Weisz A, Cicatiello L, Esumi H. Regulation of the mouse inducible- type nitric oxide synthase gene promoter by interferon-${\gamma}$ , bacterial lipopolysaccharide, and $N^G$-monomethyl-L-arginine. Biochem. J. 316: 209-215 (1996) https://doi.org/10.1042/bj3160209
  12. Tan RX, Zheng WF, Tang HQ. Biologically active substances from the genus Artemisia. Planta Med. 64: 295-302 (1998) https://doi.org/10.1055/s-2006-957438
  13. Seibert K, Zhang Y, Leahy K, Hauser S, Masferrer J, Perkins W, Lee L, Isakson P. Pharmacological and biochemical demonstration of the role of cyclooxygenase-2 in inflammation and pain. P. Natl. Acad. Sci. USA 91: 12013-12017 (1994) https://doi.org/10.1073/pnas.91.25.12013
  14. Kim JY, Jung KS, Jeong HG. Suppressive effects of the kahweol and cafestol on cyclooxygenase-2 expression in macrophages. FEBS Lett. 569: 321-326 (2004) https://doi.org/10.1016/j.febslet.2004.05.070
  15. Wakefield PE, James WD, Samlaska CP, Mettzer MS. Tumor necrosis factor. J. Am. Acad. Dermatol. 24: 675-685 (1991) https://doi.org/10.1016/0190-9622(91)70102-8
  16. Tezuka Y, Irikawa S, Kaneko T, Banskota AH, Nagaoka T, Xiong Q, Hase K, Kadota S. Screening of Chinese herbal drug extracts for inhibitory activity on nitric oxide production and identification of an active compound of Zanthoxylum bugeanum. J. Ethnopharmacol. 77: 209-217 (2001) https://doi.org/10.1016/S0378-8741(01)00300-2
  17. Willoughby DA. Heberden Oration, 1974. Human arthritis applied to animal models. Towards a better therapy. Ann. Rheum. Dis. 34: 471-478 (1975) https://doi.org/10.1136/ard.34.6.471
  18. Nathan C, Xie QW. Nitric oxide synthases: roles, tolls and controls. Cell 78: 915-918 (1994) https://doi.org/10.1016/0092-8674(94)90266-6
  19. Piguet PF, Grau GE, Houser C, Vassalli P. Tumor necrosis factor is a critical mediators in hapten induced irritant and contact hypersensitivity reaction. J. Exp. Med. 173: 673-679 (1991) https://doi.org/10.1084/jem.173.3.673
  20. Mu MM, Chakravortty D, Sugiyama T, Koide N, Takahashi K, Mori I, Yoshida T, Yokochi T. The inhibitory action of quercetin on lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophage cells. J. Endotoxin. Res. 7: 431-438 (2001) https://doi.org/10.1177/09680519010070060601
  21. Funk CD, Frunk LB, Kennedy ME, Pong AS. Fitzgerald GA. Human platelet/erythroleukemia cell prostaglandin G/H synthase: cDNA cloning, expression, and gene chromosomal assignment. FASEB J. 5: 2304-2312 (1991) https://doi.org/10.1096/fasebj.5.9.1907252
  22. Tizard IR. Immunology: An introduction inflammation. 2nd ed., Saunders College Publishing, New York, NY, USA pp. 423-441 (1986)
  23. Rockey DC, Chung JJ, McKee CM, Noble PW. Stimulation of inducible nitric oxide synthase in rat liver by hyaluronan fragments. Hepatology 27: 86-92. (1998) https://doi.org/10.1002/hep.510270115
  24. Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43: 109-142 (1991)
  25. Ryu JH, Ahn H, Kim JY, Kim YK. Inhibitory activity of plant extracts on nitric oxide synthesis in LPS-activated macrophage. Phytother. Res. 17: 485-489 (2003) https://doi.org/10.1002/ptr.1180
  26. Dinarello CA. Pro-inflammatory cytokines. Chest 118: 503-508 (2000) https://doi.org/10.1378/chest.118.2.503
  27. Liu RH, Hotchkiss JH. Potential genotoxicity of chronically elevated nitric oxide. Mutat. Res. 339: 73-89 (1995) https://doi.org/10.1016/0165-1110(95)90004-7
  28. Higuchi M, Hisgahi N, Taki H, Osawa T. Cytolytic mechanisms of activated macrophages. Tumor necrosis factor and L-argininedependent mechanisms act synergistically as the major cytolytic mechanisms of activated macrophages. J. Immunol. 144: 1425- 1431 (1990)
  29. Nunokawa Y, Ishida N, Tanaka S. Cloning of inducible nitric oxide synthase in rat vascular smooth muscle cells. Biochem. Bioph. Res. Co. 191: 89-94 (1993) https://doi.org/10.1006/bbrc.1993.1188