DOI QR코드

DOI QR Code

Simultaneous Biofiltration of H2S, NH3 and Toluene using an Inorganic/Polymeric Composite Carrier

Park, Byoung-Gi;Shin, Won-Sik;Chung, Jong-Shik

  • Published : 2008.03.28

Abstract

Simultaneous removal of ternary gases of $NH_3$, $H_2S$ and toluene in a contaminated air stream was investigated over 180 days in a biofilter. A commercially available inorganic/polymeric composite chip with a large void volume (bed porosity > 0.80) was used as a microbial support. Multiple microorganisms including Nitrosomonas and Nitrobactor for nitrogen removal, Thiobacillus thioparus (ATCC 23645) for $H_2S$ removal and Pseudomonas aeruginosa (ATCC 15692), Pseudomonas putida (ATCC 17484) and Pseudomonas putida (ATCC 23973) for toluene removal were used simultaneously. The empty bed residence time (EBRT) ranged from 60 - 120 seconds and the inlet feed concentration was $0.0325\;g/m^3-0.0651\;g/m^3$ for $NH_3$, $0.0636\;g/m^3-0.141\;g/m^3$ for $H_2S$, and $0.0918\;g/m^3-0.383\;g/m^3$ for toluene, respectively. The observed removal efficiency was 2% - 98% for $NH_3$, 2% - 100% for $H^2S$, and 2% - 80% for toluene, respectively. Maximum elimination capacity was about $2.7\;g/m^3$/hr for $NH_3$, > $6.4\;g/m^3$/hr for $H_2S$ and $4.0\;g/m^3$/hr for toluene, respectively. The inorganic/polymeric composite carrier required 40 - 80 days of wetting time for biofilm formation due to the hydrophobic nature of the carrier. Once the surface of the carrier was completely wetted, the microbial activity became stable. During the long-term operation, pressure drop was negligible because the void volume of the carrier was two times higher than the conventional packing materials.

Keywords

Biofiltration;$BioM^{TM}$;Carrier;Microorganism;Odor;VOC

References

  1. Elias, A., Barona, A., Arreguy, A., Rios, J., Aranguiz, I., and Penas, J., 'Evaluation of a packing material for the biodegradation of $H_2S$ and product analysis,' Process Biochem., 37, 813-836 (2002) https://doi.org/10.1016/S0032-9592(01)00287-4
  2. Shinabe, K., Oketani, S., Ochi, T., Kanchanatawee, S., and Matsumura, M., 'Characteristics of hydrogen sulfide removal in a carrier-packed biological deodorization system,' Biochem. Eng. J., 5, 209-217 (2002) https://doi.org/10.1016/S1369-703X(00)00061-9
  3. Yoon, I. K., Kim, C. N., and Park, C. H., 'Optimum operating conditions for the removal of volatile organic compounds in a compost-packed biofilter,' Korean J. Chem. Eng., 19, 954-959 (2002) https://doi.org/10.1007/BF02707217
  4. Devinny, J. S., Deshusses, M. A., and Webster, T. S., Biofiltration for Air Pollution Control, CRC Press, Boca Raton, FL, USA (1998)
  5. Kim, J. O., 'Removal of gaseous tichloroethylene and trachloroethylene by an activated carbon bofilter,' Environ. Eng. Res., 2, 9-19 (1997)
  6. Amarsanaa, A., Shin, W. S., Choi, J.-H., and Choi, S.-J., 'Biofiltration of gaseous toluene using adsorbent containing polyurethane foam media,' Env. Eng. Res., 11, 1-13 (2006) https://doi.org/10.4491/eer.2006.11.1.001
  7. Moe, W. M., and Irvine, R. L., 'Polyurethane foam based biofilter media for toluene removal,' Wat. Sci. Technol., 43, 35-42 (2001)
  8. Moe, W. M., and Irvine, R. L., 'Effect of nitrogen limitation on performance of toluene degrading biofilters during transient loading,' Wat. Res., 35, 1407-1414 (2001) https://doi.org/10.1016/S0043-1354(00)00417-6
  9. Ergas, S. J., Schroeder, E. D., Chang, D. P. Y., and Morton, R. L., 'Control of volatile organic compound emissions using a compost biofilter,' Water Environ. Res., 67, 816-821 (1995) https://doi.org/10.2175/106143095X131736
  10. Kinney, K. A., Wright, W., Chang, D. P., and Schroeder, E. D., Biodegradation of vapor phase contaminants, In: Bioremediation: Principles and Practice. S. K. Sikdar and R. L. Irvine (eds.). Technomic Press, Lancaster, PA, USA (1997)
  11. Delhomenie, M., Bibeau, L., Bredin, N., Roy, S., Broussau, S., Brzezinski, R., Kugelmass, J. L., and Heitz, M., 'Biofiltration of air contaminanted with toluene on a compost-based bed,' Adv. Environ. Res., 6, 239-254 (2002) https://doi.org/10.1016/S1093-0191(01)00055-7
  12. Kim, H. S., Kim, Y. J., Chung, J. S., and Xie, Q, 'Long-term operation of a biofilter for simultaneous removal of hydrogen sulfide and ammonia, J. Air Waste Manage. Assoc., 52, 1389-1398 (2002) https://doi.org/10.1080/10473289.2002.10470871
  13. Kim, H. S., Biofiltration for Removal of Odor Gases, Ph.D. Dissertation, Pohang University of Science and Technology, Pohang, Republic of Korea (2002)
  14. Chung, Y., Huang, C., and Tseng, C., 'Biological elimination of $H_2S$ and $NH_3$ from waste gases by biofilter packed with immobilized heterotrophic bacteria,' Chemosphere, 43, 1043-1050 (2001) https://doi.org/10.1016/S0045-6535(00)00211-3
  15. Liu, Y., Xie, Q., Sun, Y., Chen, J., Xue, D., and Chung, J. S., 'Simultaneous removal of ethyl acetate and toluene in air stream using compost-based biofilters,' J. Hazard. Mater., 95, 199-213 (2002) https://doi.org/10.1016/S0304-3894(02)00139-5
  16. Zilli, M., Palazzi, E., Sene, L., Converti, A., and Borghi, M. D., 'Toluene and styrene removal from air in biofilter,' Process Biochem., 37, 423-429 (2003) https://doi.org/10.1016/S0032-9592(01)00228-X
  17. Malhautier, L., Gracian, C., Roux, J., Fanlo, J., and Cloirec, P. L., 'Biological treatment process of air loaded with an ammonia and hydrogen sulfide mixture,' Chemosphere, 50, 145-153 (2003) https://doi.org/10.1016/S0045-6535(02)00395-8
  18. Cox, H. H. J., and Deshusses, M. A., 'Co-treatment of $H_2S$ and toluene in a biotrickling filter,' Chem. Eng. J., 87, 101-110 (2002) https://doi.org/10.1016/S1385-8947(01)00222-4
  19. Acuna, M. E., Villanueva, C., Cardenas, B., Christen, P., and Revah, S., 'The effect of nutrient concentration on biofilm formation on peat and gas phase toluene biodegradation under biofiltration conditions,' Process Biochem., 38, 7-13 (2002) https://doi.org/10.1016/S0032-9592(02)00039-0
  20. Lim, K. H., 'The treatment of waste-air containing mixed solvent using a biofilter 2. Treatment of waster-air containing ethanol toluene in a biofilter,' Korean J. Chem. Eng., 22, 228-233 (2005) https://doi.org/10.1007/BF02701489
  21. Oyarzun, P., Arancibia, F., Canales, C., and Aroca, G. E., 'Biofiltration of high concentration of hydrogen sulphide using Thiobacillus thioparus,' Process Biochem., 39, 165-170 (2003) https://doi.org/10.1016/S0032-9592(03)00050-5
  22. Chung, Y., Huang, C., Tseng, C., and Pan, J. R., 'Biotreatment of $H_2S$- and $NH_3$-containing waste gases by co-Immobilized cells biofilter,' Chemosphere, 41, 329-336 (2000) https://doi.org/10.1016/S0045-6535(99)00490-7
  23. Shojaosadati, S. A., and Elyasi, S., 'Removal of hydrogen sulfide by the compost biofilter with sludge of leather industry,' Resour. Conserv. Recycl., 27, 139-144 (1999) https://doi.org/10.1016/S0921-3449(98)00093-7
  24. Busca, G., and Pistarino, C., 'Abatement of ammonia and amines from waste gases: A summary,' J. Loss Prevent Proc., 16, 157-163 (2003) https://doi.org/10.1016/S0950-4230(02)00093-1
  25. Cho, K., Ryu, H. W., and Lee, N. Y., 'Biological deodorization of hydrogen sulfide using porous lava as a carrier of Thiobacillus thiooxidans,' J. Biosci. Bioeng., 90, 25-31 (2000) https://doi.org/10.1016/S1389-1723(00)80029-8
  26. Korean Ministry of Environment, Permissible air pollutant emission standards, Korean Ministry of Environment Printing Office, Seoul, Republic of Korea (2005)
  27. Hirai, M., Kamatomo, M., Yani, M., and Shoda, M., 'Comparison of biological $H_2S$ removal characteristics among four inorganic packing materials,' J. Biosci. Bioeng., 91, 396-402 (2001) https://doi.org/10.1263/jbb.91.396
  28. Schmidt, W. L., and Belser, L. W., Autotrophic nitrifying bacteria, In: Methods of Soil Analysis. Part 2., Microbiological and Biochemical Properties (Soil Science Society of America Book, No 5), 2nd ed., R. W. Weaver, S. Angle, P. Bottomley, D. Bezdiecek, S. Smith, A. Tabatabai, A. Wollum, S. H. Mickelson, and J. M. Bigham (eds.), Soil Science Society of America, Madison, WI, pp. 159-197 (1994)
  29. Row, R., Toff, R., and Waide, J., 'Microtechnique for mostprobable- number analysis,' Appl. Environ. Microbiol., 33, 675-680 (1977)
  30. Terasaka, K., Oka, J., and Tsuge, H., 'Ammonia absorption from a bubble expanding at a submerged orifice into water,' Chem. Eng. Sci., 57, 3757-3765 (2002) https://doi.org/10.1016/S0009-2509(02)00308-1
  31. Bailey, J. E., and Ollis, D. F., Biochemical Engineering Fundamentals, 2nd ed., McGraw-Hill, Inc., pp. 928 (1985)
  32. Moe, W. M., and Irvine, R. L., 'Polyurethane foam medium for biofiltration. Part II: Operation and performance,' J. Env. Eng., 126, 826-832 (2000) https://doi.org/10.1061/(ASCE)0733-9372(2000)126:9(826)
  33. Torkian, A., Dehghanzadeh, R., and Hakimjavadi, M., 'Biodegradation of aromatic hydrocarbons in a compost biofilter,' J. Chem. Technol. Biotechnol., 78, 795-801 (2003) https://doi.org/10.1002/jctb.823
  34. Abumaizar, R. J., Kocher, W., and Smith, E. H., 'Biofiltration of BTEX contaminated air streams using compost-activated carbon filter media,' J. Hazard. Mater., 60, 111-126 (1998) https://doi.org/10.1016/S0304-3894(97)00046-0
  35. Amarsanaa, A., Shin, W. S., Choi, J.-H., and Choi, S.-J., 'Biofiltration of gaseous toluene using activated carbon containing polyurethane foam media,' J. Environ. Sci., 15, 513-525 (2006) https://doi.org/10.5322/JES.2006.15.6.513
  36. Kim, S. H., Oh, K. J., Moon, J. H., and Kim, D., 'Simultaneous removal of $H_2S$ and $NH_3$ using Thiobacillus sp. IW in a three-phase fluidized-bed bioreactor,' J. Microbiol. Biotechnol., 10, 419-422 (2000)
  37. Lim, K. H., and Park, S. W., 'The treatment of waste-air containing mixed solvent using a biofilter 1. Transient behavior of biofilter to treat waste-air containing ethanol,' Korean J. Chem. Eng., 21, 1161-1167 (2004) https://doi.org/10.1007/BF02719488
  38. Park, S. J., Cho, K. S., Hirai, M., and Shoda, M., 'Removability of malodorous gases from a night soil treatment by a pilot-scale peat biofilter inoculated with Thiobacillus thioparus DW44,' J. Ferment. Bioeng., 76, 55-59 (1993) https://doi.org/10.1016/0922-338X(93)90053-B
  39. Delhomenie, M., Bibeau, L., Gendron, J., Brzezinski, R., and Heitz, M. A., 'Study of clogging in a biofilter treating toluene vapors,' Chem. Eng. J., 94, 211-222 (2003) https://doi.org/10.1016/S1385-8947(03)00052-4
  40. Kim, H. S., Xie, Q., Kim, Y. J., and Chung, J. S., 'Biofiltration of ammonia gas with sponge cube coated with mixtures of activated carbon and zeolite,' Environ. Technol., 23, 839-847 (2002) https://doi.org/10.1080/09593332308618355
  41. Edwards, V. H., 'The influence of high substrate concentrations on microbial kinetics,' Biotechnol. Bioeng., 7, 679-712 (1970)
  42. Kang, Y. T., Nagano, T., and Kashiwagi, T., 'Mass transfer correlation of $NH_3$-$H_2S$ bubble absorption,' Int. J. Refrig., 25, 878-886 (2002) https://doi.org/10.1016/S0140-7007(01)00096-2
  43. Cesario, M. T., Beverloo, W. A., Tramper, J., and Beefink, H. H., 'Enhancement of gas-liquid mass transfer rate of apolar pollutants in the biological waste gas treatment by a dispersed organic solvent,' Enzyme Microb. Technol., 21, 578-588 (1997) https://doi.org/10.1016/S0141-0229(97)00069-0
  44. Park B. G., and Chung, J. S., 'Biokinetics on simultaneous biofiltration of $H_2S$, $NH_3$ and toluene in waste air,' Korean J. Chem. Eng., 23, 428-434 (2006)

Cited by

  1. Endophytic bacterial and fungal communities transmitted from cotyledons and germs in peanut (Arachis hypogaea L.) sprouts vol.24, pp.19, 2017, https://doi.org/10.1007/s11356-017-9254-4