A Study on the Sensitivity of the BLS Methods

BLS 보정 방법의 민감도에 관한 연구

  • Lee, Seok-Jin (Department of Statistics, Hankuk University of Foreign Studies) ;
  • Shin, Key-Il (Department of Statistics, Hankuk University of Foreign Studies)
  • 이석진 (한국외국어대학교 통계학과) ;
  • 신기일 (한국외국어대학교 통계학과)
  • Published : 2008.11.30


BLS adjustment methods have been able to provide more accurate estimates of total and make samples represent population characteristics by post-adjustment of design weights of samples. However, BLS methods use additional data, for instance number of employee, without this information or using other information, give different weight adjustment factors. In this paper we studied the sensitivity of the variables used in BLS adjustment. The 2007 monthly labor survey data is used in analysis.


  1. 김규성 (2000). 무응답 대체 방법과 대체 효과, <한국조사연구학회>, 1, 1-14
  2. 신민웅, 이상은 (2001). <표본조사를 위한 표본설계>, 교우사
  3. 이상은 (2008). 표본조사에 따른 추정방법 비교: 가중치 조정기법을 중심으로, <응용통계연구>, 21, 413-427
  4. 이진희, 신기일 (2007). 공간-시계열 모형을 이용한 결측대체 방법에 관한 연구, <응용통계연구>, 20, 499-514
  5. Burdete, T. (2003). Survey of Occupational Injuries and Illnesses, Sample Design, Bureau of Labor Statistics
  6. Kish, L. (1965). Survey Sampling, John Wiley & Sons, New York
  7. Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis with Missing Data, John Wiley & Sons, New Jersey
  8. Oh, H. L. and Scheuren, F. (1987). Modi¯ed raking ratio estimation, Survey Methodology, 13, 209-219
  9. Rao, J. N. K. (2003). Small Area Estimation, John Wiley & Sons, New York
  10. Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys, John Wiley & Sons, New York

Cited by

  1. Multiple Imputation Reducing Outlier Effect using Weight Adjustment Methods vol.26, pp.4, 2013,
  2. A Multiple Imputation for Reducing Outlier Effect vol.27, pp.7, 2014,