DOI QR코드

DOI QR Code

Median Ranked Ordering-Set Sample Test for Ordered Alternatives

  • Kim, Dong-Hee (Department of Statistics, Statistical Research Institute, Pusan National University) ;
  • Ock, Bong-Seak (Department of Statistics, Pusan National University)
  • Published : 2008.11.30

Abstract

In this paper, we consider the c-sample location problem for ordered alternatives using median ranked ordering-set samples(MROSS). We propose the test statistic using the median of samples that have the same ranked order in each cycle of ranted ordering-set sample(ROSS). We obtain the asymptotic property of the proposed test statistic and Pitman efficiency with respect to other test statistic. In simulation study, our proposed test statistic has good powers for some underlying distributions we consider.

References

  1. Bohn, L. L. and Wolfe, D. A. (1992). Nonparametric two-sample procedures for ranked-set samples data, Journal of the American Statistical Association, 87, 552-561 https://doi.org/10.2307/2290290
  2. Bohn, L. L. and Wolfe, D. A. (1994). The effect of imperfect judgement rankings on properties of procedures based on the ranked-set samples analog of the Mann-Whitney-Wilcoxon statistic, Journal of the American Statistical Association, 89, 168-176 https://doi.org/10.2307/2291213
  3. Dell, T. R. and Clutter, J. L. (1972). Ranked-set sampling theory with order statistics background, Biometrics, 28, 545-553 https://doi.org/10.2307/2556166
  4. Hettmansperger, T. P. (1995). The ranked-set sample sign test, Journal of Nonparametric Statistics, 4, 263-270 https://doi.org/10.1080/10485259508832617
  5. Hoeffding, W. (1948). A class of statistics with asymptotically normal distribution, The Annals of Mathematical Statistics, 19, 293-325 https://doi.org/10.1214/aoms/1177730196
  6. Jonckheere, A. R. (1954). A distribution-free k-sample test against ordered alternatives, Biometrika, 41, 133-145 https://doi.org/10.1093/biomet/41.1-2.133
  7. Kim, D. H. and Kim, H. G. (2003). Sign test using ranked ordering-set sampling, Journal of Nonparametric Statistics, 15, 303-309 https://doi.org/10.1080/1048525031000078330
  8. Kim, D. H., Kim, H. G. and Park, H. K. (2000). Nonparametric test for ordered alternatives on multiple ranked-set samples, The Korean Communications in Statistics, 7, 563-573
  9. Kim, D. H., Kim, H. G. and You, S. H. (2006). Nonparametric test for ordered alternatives on ranked ordering-set samples, Journal of the Korean Data Analysis Society, 8, 459-467
  10. Koti, K. M. and Babu, G. J. (1996). Sign test for ranked-set sampling, Communications in Statistics - Theory and Methods, 25, 1617-1630 https://doi.org/10.1080/03610929608831789
  11. McIntyre, G. A. (1952). A method for unbiased selective sampling using ranked sets, Australian Journal of Agricultural Research, 3, 385-390 https://doi.org/10.1071/AR9520385
  12. Ozturk, O. (1999). Two-sample inference based on one-sample ranked set sample sign statistics, Journal of Nonparametric Statistics, 10, 197-212 https://doi.org/10.1080/10485259908832760
  13. Randles, R. H. and Wolfe, D. A. (1979). Introduction to the theory of nonparametric statistics, John Wiley & Sons, New York
  14. Stokes, S. L. (1977). Ranked set sampling with concomitant variables, Communications in Statistics - Theory and Methods, 6, 1207-1211 https://doi.org/10.1080/03610927708827563
  15. Stokes, S. L. and Sager, T. W. (1988). Characterization of a ranked-set sample with application to estimating distribution functions, Journal of the American Statistical Association, 83, 374-381 https://doi.org/10.2307/2288852
  16. Takahasi, K. and Wakimoto, K. (1968). On unbiased estimates of the population mean based on the sample stratified by means of ordering, Annals of the Institute of Statistical Mathematics, 20, 1-31 https://doi.org/10.1007/BF02911622