A General Mixed Linear Model with Left-Censored Data

  • Ha, Il-Do (Department of Asset Management, Daegu Haany University)
  • Published : 2008.11.30


Mixed linear models have been widely used in various correlated data including multivariate survival data. In this paper we extend hierarchical-likelihood(h-likelihood) approach for mixed linear models with right censored data to that for left censored data. We also allow a general random-effect structure and propose the estimation procedure. The proposed method is illustrated using a numerical data set and is also compared with marginal likelihood method.


  1. Carriquiry, A. L. and Gianola, D. and Fernando, R. L. (1987). Mixed-model analysis of a censored normal distribution with reference to animal breeding, Biometrics, 43, 929-939
  2. Gueorguieva, R. (2001). A multivariate generalized linear mixed model for joint modelling of clustered outcomes in the exponential family, Statistical Modelling, 1, 177-193
  3. Ha, I. D. and Lee, Y. (2005). Multilevel mixed linear models for survival data, Lifetime data Analysis, 11, 131-142
  4. Ha, I. D., Lee, Y. and MacKenzie, G. (2007a). Model selection for multi-component frailty models, Statistics in Medicine, 26, 4790-4807
  5. Ha, I. D., Lee, Y. and Pawitan, Y. (2007b). Genetic mixed linear models for twin survival data, Behavior Genetics, 37, 621-630
  6. Ha, I. D., Lee, Y. and Song, J. K. (2001). Hierarchical likelihood approach for frailty models, Biometrika, 88, 233-243
  7. Ha, I. D., Lee, Y. and Song, J. K. (2002). Hierarchical-likelihood approach for mixed linear models with censored data, Lifetime Data Analysis, 8, 163-176
  8. Henderson, C. R. (1975). Best linear unbiased estimation and prediction under a selection model, Biometrics, 31, 423-447
  9. Hougaard, P. (2000). Analysis of Multivariate Survival Data, Springer-Verlag, New York
  10. Hughes, J. P. (1999). Mixed effects models with censored data with application to HIV RNA levels, Biometrics, 55, 625-629
  11. Jacqmin-Gadda, H., Thiebaut, R., Ch^ene, G. and Commenges, D. (2000). Analysis of left-censored longitudinal data with application to viral load in HIV infection, Biostatistics, 1, 355-368
  12. Klein, J. P., Pelz, C. and Zhang, M. J. (1999). Modelling random effects for censored data by a multivariate normal regression model, Biometrics, 55, 497-506
  13. Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data, Biometrics, 38, 963-974
  14. Lee, Y. and Nelder, J. A. (1996). Hierarchical generalized linear models (with discussion), Journal of the Royal Statistical Society, Series B, 58, 619-678
  15. Lee, Y. and Nelder, J. A. (2001). Hierarchical generalised linear models: A synthesis of generalised linear models, random-effect models and structured dispersions, Biometrika, 88, 987-1006
  16. Lyles, R. H., Lyles, C. M. and Talyor, D. J. (2000). Random regression models for human immunodeficiency virus ribonucleic acid data subject to left censoring and informative drop-outs, Journal of the Royal Statistical Society: Series C (Applied Statistics), 49, 485-497
  17. Patterson, H. D. and Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal, Biometrika, 58, 545-554
  18. Sakamoto, Y., Ishiguro, M. and Kitagawa, G. (1986). Akaike Information Criterion Statistics, KTK Scientific Publisher, Tokyo
  19. Thiebaut, R. and Jacqmin-Gadda, H. (2004). Mixed models for longitudinal leftcensored repeated measures, Computer Methods and Programs in Biomedicine, 74, 255-260
  20. Turnbull, B. W. (1974). Nonparametric estimation of a survivorship function with doubly censored data, Journal of the American Statistical Association, 69, 169-173