Use of Pseudo-Likelihood Estimation in Taylor's Power Law with Correlated Responses

DOI QR코드

DOI QR Code

Park, Bum-Hee;Park, Heung-Sun

  • 발행 : 2008.11.30

초록

Correlated responses have been widely analyzed since Liang and Zeger (1986) introduced the famous Generalized Estimating Equations(GEE). However, their variance functions were restricted to known quantifies multiplied by scale parameter. In so many industries and academic/research fields, power-of-the-mean variance function is one of the common variance function. We suggest GEE-type pseudolikelihood estimation based on the power-of-the-mean variance using existing software and investigate it's efficiency for different working correlation matrices.

키워드

Generalized estimating equations; GEE;power-of-the-mean;Taylor's power law;linear mixed model

참고문헌

  1. Liang, K. Y., Zeger, S. L. and Qaqish, B. (1992). Multivariate regression analyses for categorical data, Journal of the Royal Statistical Society, Series B, 54, 3-40
  2. Littell, R. C., Milliken, G. A., Stroup, W. W. and Wolfinger, R. (1996). SAS SYSTEM for Mixed Models, SAS Institute. Inc., Cary, NC, USA
  3. Madsen, L. and Dalthorp, D. (2007). Generating correlated count data, Environmental and Ecological Statistics, 14, 129-148 https://doi.org/10.1007/s10651-007-0008-1
  4. Fitzmaurice, G. M. (1995). A caveat concerning independence estimating equations with multivariate binary data, Biometrics, 51, 309-317 https://doi.org/10.2307/2533336
  5. Liang, K. Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models, Biometrika, 73, 13-22 https://doi.org/10.1093/biomet/73.1.13
  6. Davis, P. M. and Pedigo, L. P. (1989). Analysis of spatial patterns and sequential count plans for stalk, Environmental Entomology, 18, 504-509 https://doi.org/10.1093/ee/18.3.504
  7. Pepe, M. S. and Anderson, G. L. (1994). A cautionary note on inference for marginal regression models with longitudinal data and general correlated response data, Communications in Statistics - Simulation and Computation, 23, 939-951 https://doi.org/10.1080/03610919408813210
  8. Perry, J. N. (1981). Taylor's power law for dependence of variance on mean in animal population, Applied Statistics, 30, 254-263 https://doi.org/10.2307/2346349
  9. Southwood, T. R. E. (1978). Ecological Methods (2nd Ed.), Chapman & Hall/CRC, London, p.391
  10. Mancl, L. A. and Leroux, B. G. (1996). Efficiency of regression estimates for clustered data, Biometrics, 52, 500-511 https://doi.org/10.2307/2532890
  11. Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method, Biometrika, 61, 439-447
  12. Whittle, P. (1961). Gaussian estimation in stationary time series, Bulletin of the International Statistical Institute, 39, 1-26
  13. Taylor, L. R. (1961). Aggregation, variance and the mean, Nature, 189, 732-735 https://doi.org/10.1038/189732a0
  14. Thall, P. F. and Vail, S. C. (1990). Random effects models for serial observations with overdispersion, Biometrics, 40, 961-971 https://doi.org/10.2307/2531147
  15. Crowder, M. (1985). Gaussian estimation for correlated binomial data, Journal of the Royal Statistical Society, Series A, 47, 229-237
  16. Crowder, M. (1995). On the use of a working correlation matrix in using generalised linear models for repeated measures, Biometrika, 82, 407-410 https://doi.org/10.1093/biomet/82.2.407
  17. Davidian, M. and Giltinan, D. M. (1995). Nonlinear Models for Repeated Measurement Data, Chapman & Hall/CRC, London, p.164
  18. Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models, Journal of the American Statistical Association, 88, 9-25 https://doi.org/10.2307/2290687
  19. Carroll, R. J. and Ruppert, D. (1988). Transformation and Weighting in Regression, Chapman & Hall/CRC, London, p.270
  20. Carroll, R. J., Ruppert, D. and Stefanski, L. A. (1995). Measurement Error in Nonlinear Models, Chapman & Hall/CRC, London
  21. Park, H. and Cho, K. (2004). Use of covariates in Taylor's power law for sequential sampling in pest management, Journal of Agricultural, Biological and Environmental Statistics, 9, 462-478 https://doi.org/10.1198/108571104X15746
  22. Sutradhar, B. C. and Das, K. (1999). On the efficiency of regression estimators in generalised linear models for longitudinal data, Biometrika, 86, 459-465 https://doi.org/10.1093/biomet/86.2.459
  23. Wang, Y. G. and Carey, V. (2003). Working correlation structure misspecification, estimation and covariate design: Implications for generalised estimating equations performance, Biometrika, 90, 29-41 https://doi.org/10.1093/biomet/90.1.29
  24. Wang, Y. G. and Carey, V. (2004). Unbiased estimating equations from working correlation models for irregularly timed repeated measures, Journal of the American Statistical Association, 99, 845-853 https://doi.org/10.1198/016214504000001178