동적 순서 XML 트리에서 레이블링 기법을 이용한 효율적인 수정처리

이강우*

An Efficient Updates Processing Using Labeling Scheme In Dynamic Ordered XML Trees

Kang-woo Lee*

요 약

동적인 XML 문서에서 빈번히 발생하는 캐신텝에 대한 고려를 하지 않는 레이블링 기법들은 XML 문서 트리의 캐신텝이 일어날 때마다 변환된 레이블 정보를 반영하기 위해서 전체 XML 트리를 재탐색하여 전체 노드의 레이블을 다시 계산하는 레이블링 과정이 필요하다. 이러한 레이블링은 캐신텝이 빈번히 일어나는 동적인 XML 문서에서 사용이 상당히 크다는 단점이 있다. 이런 단점을 해결하기 위해 레이블링 과정이 필요 없는 레이블링 기법으로 프라임 넘버 레이블링 기법이 제안되었다. 그러나 프라임 넘버 레이블링 기법은 문서가 캐신텝 때, XML 문서 트리의 노드 간 형제순서를 캐신텝하는 문제는 고려하지 않고 있다. 이러한 형제순서의 갱신과정은 XML 문서 트리의 많은 부분을 재탐색하고 재기록하여야 하므로 많은 비용이 필요하게 된다. 따라서 본 논문에서는 XML 문서 트리의 레이블링과 재계산이 필요 없이 형제순서를 유지할 수 있는 형제순서 값을 갖는 프라임 넘버 레이블링 기법을 제안한다.

ABSTRACT

Labeling schemes which don’t consider about frequent update in dynamic XML documents need relabeling process to reflect the changed label information whenever the tree of XML document is update. There is disadvantage of considerable expenses in the dynamic XML document which can occurs frequent update. To solve this problem, we suggest prime number labeling scheme that doesn’t need relabeling process. However the prime number labeling scheme does not consider that it needs to update the sibling order of nodes in the XML tree of document. This update process needs much costs because the most of the XML tree of document has to be relabeling and recalculation. In this paper, we propose the prime number labeling scheme with sibling order value that can maintain the sibling order without relabeling or recalculation the XML tree of documents.

키워드

 중요 Prime Numbering Scheme, Dynamic XML, Labeling, XML Trees
I. Introduction

The growing number of XML repositories on the World Wide Web has provided the development of systems that can store and query XML data efficiently. XPath and XQuery are two main XML query languages that express the structure of XML documents as linear paths or twig patterns[1,2,3].

There are two main techniques to facilitate the XML queries, viz. structural index and labeling scheme. The structural index approaches, such as data-guide in the Lore System and representative objects, can help to traverse through the hierarchy of XML, but this traverse is costly. The labeling scheme approaches, such as containment scheme, prefix scheme and prime scheme, require smaller storage space, yet they can efficiently determine the ancestor-descendent and parent-child relationships between any two elements of the XML. In this paper, we focus on the labeling schemes[1].

If the XML is static, the existing labeling schemes can efficiently process different queries. However if the XML is dynamic, how to efficiently update the labels of the labeling schemes becomes to an important research topic[4].

As we know, the elements in the XML are intrinsically ordered, which is referred to as document order, i.e. the element sequence in the XML document. The relative order of two paragraphs in the XML document is important because the order may influence the semantics, thus the standard XML query language require the output of queries to be in document order by default. Hence it is very important to maintain the document order when the XML is updated[5,6].

Some researches have been done to maintain the document order in XML updating. However the update costs of these approaches are still expensive[7,8]. Therefore in this paper we focus on how to dramatically decrease the update cost.

The rest of the paper is organized as follows. Section 2 reviews the related work and gives the motivation of this paper. We propose our improved the prime numbering scheme with sibling-order value in Section 3. The most part of this paper is Section 3, in which we show that the scheme proposed in this paper need not relabel any existing nodes and need not re-calculate any values when updating an ordered node. The experimental results are illustrated in Section 4, and we conclude in Section 5.

II. Related works

In this section, we present three families of labeling schemes, namely containment, prefix and prime.

2.1 Containment labeling scheme

The label of a node is assigned three values: [start, end, level] (see Fig. 1(a.))[9]. For any two nodes u and v, u is an ancestor of v iff u.start < v.start and v.end < u.end. In other words, the interval of v is contained in the interval of u. Node u is a parent of and v iff u is an ancestor of v and v.level - u.level = 1.

While containment labeling schemes are effective in supporting XML query processing, they cannot handle dynamic updates. Insertion or deletion of nodes into a labeled XML tree may result in a total relabeling of the XML tree. This problem may be alleviated somewhat by reserving enough space for anticipated insertions[10]. However, it is hard to predict the actual space requirements. Thus, relabeling after updates is inevitable for containment labeling schemes which are not suitable for labeling XML documents in update-intensive applications.

2.2 Prefix labeling scheme

The label of a node is that its parent's label concatenations its own label(self_label)(see Fig. 1(b.))[4]. For any nodes u and v, u is an ancestor of v iff label(u) is a prefix of label(v). Node u is a parent of node v iff label(v) has no prefix when removing label(u) from the left side of label(v).

DeweyID[10] labels the n-th child of a node with an integer n, and this n should be concatenated to its parent's label and the delimiter (e.g. ".") to form the complete label of
this child node. When a node is inserted, DeweyID needs to relabel the sibling nodes after this inserted node and the descendants of these siblings to maintain the document order.

To date, none of the existing prefix labeling schemes can support updates for ordered XML data at low cost. When a new node is inserted into an ordered XML tree, all the existing prefix labeling schemes require a relabeling of the tree.

![Diagram](image.png)

그림 1. 레이블링 기법 : a) 병위기반 b) 정위기반
Fig. 1. Labeling Schemes : a) Containment b) Prefix

2.3 Prime labeling scheme

Wu et al.[4] use Prime numbers to label XML trees. The root node is labeled with “1” (integer). Based on the depth first approach, each node is given a unique prime number \(\text{self}_\text{label}\) and the label of each node is the product of its parent node’s label \((\text{parent}_\text{label})\) and its own \(\text{self}_\text{label}\). For any two nodes \(u\) and \(v\), \(u\) is an ancestor of \(v\) iff \(\text{label}(v) \mod \text{label}(u)=0\). Node \(u\) is a parent of node \(v\) iff \(\text{label}(v)\mod\text{self}_\text{label}(v) = \text{label}(u)\).

If an integer \(A\) has a prime factor which is not a prime factor of another integer \(B\), then B is not divisible by \(A\). We observe that in XML trees, if a node has a descendant which is not a descendant of another node \(B\), then \(A\) cannot be a descendant of node \(B\). Therefore, we can easily determine the ancestor-descendant relationship by using the divisible property of prime numbers. Fig. 2. illustrates the basic prime labeling scheme.

![Diagram](image2.png)

그림 2. 프라임 넘버 레이블링
Fig. 2. Prime number labeling

Prime labeling scheme uses the SC(Simultaneous Congruence) values in Chinese Remainder Theorem to determine the document order, i.e. \(\text{SC} \equiv \text{self}_\text{label} \mod \text{document order}\). When the document order is changed, Prime only needs to recalculate the SC values instead of relabeling, but the recalculation is much more time consuming[10].

Although prime labeling scheme supports order-sensitive updates without relabeling the existing nodes, it needs to recalculate the SC values based on the new ordering of nodes. The re-calculation is very time consuming.

III. Prime labeling scheme with sibling-order value

In the section, we describe the proposed labeling scheme that exploits sibling-order value.

3.1 Sibling-order value

The most important feature of proposed labeling scheme is that we compare labels based on the lexicographical order. The lexicographical order is a way to order words (or strings), we can see their order in a phone book or an English language dictionary. Here is a formal definition of lexicographical order. If we have two words \(x=x_1x_2x_3\ldots x_n\) and \(y=y_1y_2y_3\ldots y_m\), where \(x_i\) and \(y_j\) stand for letters of these words, \(n\) is the length of \(x\) and \(m\) is the length of \(y\), then
we say that:

\[
x = y (x = y) \text{ when } x \text{ and } y \text{ have the same length and all corresponding letters match (example } ababa = ababa),
\]

\[
x \text{ precedes } y (x < y) \text{ when } \begin{align*}
\text{either } x \text{ is a proper prefix of } y \text{ (i.e., each letter of } x \text{ is equal to the corresponding letter of } y, \text{ and } x \text{ is strictly shorter than } y; \ abc < abcaaa, \text{ but not } ab < ab, \text{ because } ab \text{ is not a proper prefix of } ab \text{ even though } ab \text{ is a prefix of } ab) \\
or \ x \text{ is not a prefix of } y \text{ and the first from the left letter on which } x \text{ and } y \text{ differ is smaller for } x \text{ than it is for } y \text{ (example: } acds < acdz, \ c < d).
\end{align*}
\]

Given two binary strings '0011' and '01', '0011' < '01' lexicographically because the comparison is from left to right, and the 2nd bit of '0011' is '0', while the 2nd bit of '01' is '1'. Another example, '01' < '0101' because '01' is a prefix of '0101'.

3.2 Determination of sibling order value

3.2.1 Algorithm for determination of sibling order value

The sibling order value is to determine the SO value of a new node by using the SO value of the previous node prior to the inserted position when the new node is put into the XML document tree. There are three kinds of the SO value in accordance with the inserted position.

[Case 1] Insert a node before the first sibling node (see Fig. 3.).

The Sibling Order(SO) value of the inserted node is that the last bit of the first SO value is changed to "01".

[Case 2] Insert a node at any position among two nodes - left node and right node (see Fig. 4.).

If the size of left node greater than or equal to the size of right node, the SO value of the inserted node is that SO value of left node concatenates "1". Otherwise, the SO value of the inserted node is that we change the last bit of the SO value of the right node into "01".

```java
Function DetermineSiblingOrder_Pre(SO\textsubscript{R})
// \texttt{SO\textsubscript{R}} : SO value of the right node
// \texttt{SO\textsubscript{N}} : SO value of the inserted node
begin
SO\textsubscript{N} = replace(lastbit(SO\textsubscript{R}), "01");
//replace() : change the lastbit(SO\textsubscript{R}) to "01"
//lastbit() : fetch the last bit of SO value
end
End Function
```

그림 3. DetermineSiblingOrder_Pre 알고리즘

Fig. 3. DetermineSiblingOrder_Pre Algorithm

[Case 3] Insert a node after the last sibling node (see Fig. 5.).

The Sibling Order(SO) value of the inserted node is that we appended the SO value of left node "1".

3.2.2 Prime Numbering method with sibling order value

The scheme for determination of parent-child relationships in the XLM document tree is same to the prime numbering method. The labeling scheme is to add the SO value to the existing label for determining the sibling order. Therefore, the structure of labeling can be represent with \([\text{self}_\text{label}, \text{SO}]\). In case b2 is inserted between b1 and b3, \([\text{self}_\text{label}] = 17\) (in figure 5, a given prime number is followed by a next prime number in prime number list) and 119 is multiplied by parent's \([\text{self}_\text{label}]\). The SO value is "01" for SO\textsubscript{R}, "0101" for SO\textsubscript{N} and "01011" because of size(SO\textsubscript{L}) < size(SO\textsubscript{R}). Thus when b2 is inserted, the label is \([119, 01001]\). The determination for parent-child relationships can be understood by figuring out that \(\circ\) and b2 are in a parent-child relation because the \([\text{self}_\text{label}]\) of \(\circ\), 7, divided by the \([\text{self}_\text{label}]\) of b2, '119', equals '0'. The sibling order of b1, b2, and b3 is 01 < 01001 < 0101.
Fig. 5. DeterminingTreeNode Post-Order Algorithm

The self-label value is used for the determination of
accessor-descendant relationships while the SO value is used
for the determination of the sibling order. The following
illustrates the insertion and deletion algorithm for a new
node in the XML document tree which is represented with
these labels.

Fig. 6. Prime number scheme with sibling
order value

Fig. 4. DeterminingSiblingOrder In Algorithm

If a node is required to delete, the corresponding node can
be complete simply by deleting it without recalculating or
relabeling the order information like an existing scheme.
Fig. 9 shows the time for relabeling and recalculating the SC value. The prime scheme (right axis) requires more time than prefix labeling scheme (left axis). But the scheme introduced in this paper no more requires any nodes for relabeling or recalculating in all of the six cases.

![Graph showing processing time](image)

V. Conclusion

The objective for designing labeling schemes for XML trees is to allow quick determination of the relationships among the element nodes without actually accessing the XML files. Motivated by the need to efficiently support queries and updates in ordered XML trees, we have developed a prime number labeling scheme with sibling order value.

If an order-sensitive node is inserted in XML document, updating or recalculating of labeling is required to sustain a document order like the existing labeling scheme. In order to solve such a problem, this paper suggests that if an order-sensitive node is inserted into XML document tree, the prime numbering method with sibling order value is an alternative without relabeling or recalculating of labeling. That is, the sibling order value is given not by using SC table for reducing the maintenance cost of SC table, and problems of prime numbering method are solved by the sibling order value. The efficiency of the method proposed in this paper is demonstrated through experimenting both the existing and the proposed scheme.
As topics for future researches, we may focus on how to reduce the size of label and how to improve the existing query processing scheme through using the method proposed in this paper.

References

저자소개

이강우(Kang-Woo Lee)

1997년 2월 홍익대학교 전자계산학과(이학박사)
2002년-현재 한라대학교 컴퓨터공학과 교수
※ 관심분야: 데이터베이스,Ubiquitous컴퓨팅