Evaluation of Hydrogenation Properties on Ti-Cr-Nb Alloys Manufactured by Arc Melting

아크용해법에 의한 Ti-Cr-Nb합금의 제조와 수소와 특성 평가

  • Lee, Young-Geun (Department of Mater. Sci. & Eng., Chungju National Univ.) ;
  • Hong, Tae-Whan (Department of Mater. Sci. & Eng., Chungju National Univ.)
  • 이영근 (충주대학교 신소재공학과) ;
  • 홍태환 (충주대학교 신소재공학과)
  • Published : 2008.12.30


Ti-Cr alloys consist of BCC solid solution, C36, C14 and C15 Laves phase at high temperature. Among others, the BCC solid solution phase was reported to have a high hydrogen storage capacity. However, activation, wide range of hysteresis at hydrogenation/dehydrogenation, and degradation of hydrogen capacity due to hydriding/dehydriding cycles must be improved for its application. In this study, to improve such problems, we added a Nb. For attaining target materials, Ti-10Cr-xNb(x=1, 3, 5wt.%) specimens were prepared by arc melting. The arc melting process was carried out under argon atmosphere. As-received specimens were characterized using XRD(X-ray diffraction), SEM(Scanning Electron Microscopy) with EDX(Energy Dispersive X-ray) and TG/DSC(Thermo Gravimetric Analysis/Differential Scanning Calorimetry). In order to examine hydrogenation behavior, the PCI(pressure-Composition-Isotherm) was performed at 293, 323, 373 and 423K.


Hydrogen storage alloy;Arc melting;Ti-Cr alloy;Laves phase


  1. 권호영, 강길구 저, 수소저장합금 개론(물성과 이론), 골드, 2003, pp. 368-373
  2. 수소에너지사업단, 수소에너지정보, Hydrogen Information 제 9호, 2005, pp. 9-14
  3. M. Okada, T. Chou, A. Kamegawa, T. Tamura, H. Takamura, A. Matsukawa, S. Yamashita, Ti-Cr-X Protium Absorbing Alloys with High Protium Content for Fuel-cell, J. Alloys Comp, Vol. 356-357, 2003, pp. 480-485 https://doi.org/10.1016/S0925-8388(02)01246-X
  4. M. Okada, T. Kuriiwa, T. Tamura, H. Takamura, A. Kamegawa, Ti-V-Cr BCC Alloys System with High Protium Content, Met. Mater. Int. Vol. 7, No. 1, 2001, pp. 67-72 https://doi.org/10.1007/BF03026941
  5. Y. Shudo, T. Ebisawa, H. Itoh, Characterization of Ti-Zr-Mn-V-based Laves Phase Alloys for MH Refrigeration System, J. Alloys Comp, Vol. 356-357, 2003, pp. 497-500 https://doi.org/10.1016/S0925-8388(03)00365-7
  6. Adel Y. Esayed, Hysteresis and Thermodynamic Characterization of $Nb_{1-x}Cr_x$(x=0.03, 0.05, 0.1), Int. J. Hydrogen energy, Vol. 25, 2000, pp. 363-368 https://doi.org/10.1016/S0360-3199(99)00025-7
  7. Kyung Shin, Song Seok, Tae-Whan Hong, Fabrication and Evaluation of Hydrogenation Properties on Ti-Nb-Cr Alloys by Planetary Ball Milling, J Korea Inst. Met. Mater, Vol. 43, No. 11, 2005, pp. 708-713
  8. Shin-Ichi Yamamura, Hyang-Yeon Kim, Hisamichi Kimura, Akihisa Inoue, Yoshiaki Arata, Thermal stabilities and discharge capacities of melt-spun Mg-Ni-based amorphous alloys, J. Alloys Comp, Vol. 339, 2002, pp. 230-235 https://doi.org/10.1016/S0925-8388(01)01998-3
  9. A. Y. Esayed, D.O. Northwood, Hysteresis in Metallic Solution and Intermetallic Compound-Hydrogen Systems, Int. J. Hydrogen energy, Vol. 22, No. 1, 1997, pp. 77-82 https://doi.org/10.1016/S0360-3199(96)00076-6
  10. Z. Dehouche., M. Savard, F. Laurencelle, J. Goyette, Ti-V-Mn based Alloys for Hydrogen Compression System, J. Alloys Comp, Vol. 400, 2005, pp. 276-280 https://doi.org/10.1016/j.jallcom.2005.04.007
  11. Satoshi Semboshi, Naoya Masahashi, Toyohiko J. Konno, Masaki Sakurai, Shuji Hanada, Composition Dependence of Hydrogen Absorbing Properties in Melt Quenched and Annealed $TiMn_2$ based Alloys, J. Alloys Comp, Vol. 379, 2004, pp. 290-297 https://doi.org/10.1016/j.jallcom.2004.02.045
  12. M. Uno, K. Takahashi, T. Maruyama, H. Muta, S. Yamanaka, Hydrogen Solubility of BCC Titanium Alloys, J. Alloys Comp. Vol. 366, 2004, pp. 213-216 https://doi.org/10.1016/S0925-8388(03)00749-7
  13. Adel Y. Esayed, Absorption of Hydrogen by $Nb_{1-x}Cr_x$ Solid Solutin Alloy, Int. J. Hydrogen energy, Vol. 25, 2000, pp. 357-362 https://doi.org/10.1016/S0360-3199(99)00029-4
  14. 21세기 프론티어 사업단, 수소에너지, 아진, 2004, p. 2470
  15. P. Palade, S. Saritori, A. Maddalena, G. Principi, S. Lo Russo, M. Lazarescu, G. Schinteie, V. Kuncser, G. Filoti, Hydrogen Storage in Mg-Ni-Fe Compounds Prepared by Melt Spinning and Ball Milling, J. Alloys Comp, Vol. 415, 2006 pp. 170-176 https://doi.org/10.1016/j.jallcom.2005.08.017
  16. M. Okada, T. Kuriiwa, A. Kamegawa, H. Takamura, Role of Intermeallics in Hydrogen Storage Materials, Mat. Sci. Eng, A329-331, 2002, pp. 305-312
  17. G. Saage, S. Sartori, J. Eckert, L. Schultz, Low Magnetostriction Cystalline Ribbons Prepared by Melt-Spinning and Reactive Annealing, Mat. Sci and Eng, A375-377, 2004, pp. 1125-1128
  18. 齊藤安俊, 物質科學のための熱分析の基礎, 共立出版, 1990, pp. 105-172
  19. H. Itoh, H. Arashima, K. Kubo, T. Kabutomori, The Influence of Microstructure on Hydrogen Absorption Properties of Ti-Cr-V Alloys, J. Alloys Comp, Vol. 330-332, 2002, pp. 287-291 https://doi.org/10.1016/S0925-8388(01)01530-4
  20. A.Y. Esayed, D.O. Northwood, Thermodynamic Characterization of $(Nb_{1-x}Fe_x)_{1-X}Cr_X-H$ Systems, Int. J. Hydrogen energy, Vol. 20, No. 11, 1995, pp. 893-896 https://doi.org/10.1016/0360-3199(94)00116-H