Two-Step Thermochemical Cycle with Supported $NiFe_2O_4$ for Hydrogen Production

지지체의 변화에 따른 Ni-페라이트의 2단계 열화학 사이클 반응 특성에 관한 연구

  • Kim, Woo-Jin (Department of Chemical Engineering, Chungnam National Univ.) ;
  • Kang, Kyoung-Soo (Hydrogen Energy Research Group, Korea Institute of Energy Research) ;
  • Kim, Chang-Hee (Hydrogen Energy Research Group, Korea Institute of Energy Research) ;
  • Choi, Won-Chul (Hydrogen Energy Research Group, Korea Institute of Energy Research) ;
  • Kang, Yong (Department of Chemical Engineering, Chungnam National Univ.) ;
  • Park, Chu-Sik (Hydrogen Energy Research Group, Korea Institute of Energy Research)
  • 김우진 (충남대학교 화학공학과) ;
  • 강경수 (한국 에너지 기술 연구원 수소에너지 연구 센터) ;
  • 김창희 (한국 에너지 기술 연구원 수소에너지 연구 센터) ;
  • 조원철 (한국 에너지 기술 연구원 수소에너지 연구 센터) ;
  • 강용 (충남대학교 화학공학과) ;
  • 박주식 (한국 에너지 기술 연구원 수소에너지 연구 센터)
  • Published : 2008.12.30

Abstract

The two-step thermochemical cycle was examined on the $CeO_2$, YSZ, and $ZrO_2$-supported $NiFe_2O_4$ to investigate the effects of support material addition. The supported $NiFe_2O_4$ was prepared by the aerial oxidation method. Thermal reduction was conducted at 1573K and 1523K while water-splitting was carried out at 1073K. Supporting $NiFe_2O_4$ on $CeO_2$, YSZ and $ZrO_2$ alleviated the high-temperature sintering of iron-oxide. As a result, the supported $NiFe_2O_4$ exhibited greater reactivity and repeatability in the water-splitting cycle as compared to the unsupported $NiFe_2O_4$. Especially, $ZrO_2$-supported $NiFe_2O_4$ showed better sintering inhibition effect than other supporting materials, but hydrogen production amount was decreased as cycle repeated. In case of $CeO_2$-supported $NiFe_2O_4$, improvement of hydrogen production was found when the thermal reduction was conducted at 1573K. It was deduced that redox reaction of $CeO_2$ activated above 1573K.

Keywords

Thermal reduction;Water-splitting;Hydorgen production;$NiFe_2O_4$;Sintering;Support material

References

  1. A. Tofighi and F. Sibieude, "Note on the condensation of the vapor phase above a melt of iron oxide in a solar parabolic concentrator", Int. J. Hydrogen Energy, Vol. 5, No. 4, 1980, pp. 375-381 https://doi.org/10.1016/0360-3199(80)90019-1
  2. F. Sibieude, M. Ducarroir, A. Tofighi and J. Ambriz, "High temperature experiments with a solar furnace : The decomposition of $Fe_3O_4$, $Mn_3O_4$, CdO", Int. J. Hydrogen Energy, Vol. 7, No. 1, 1982, pp. 79-88 https://doi.org/10.1016/0360-3199(82)90209-9
  3. M. Lundberg, "Model calculations on some feasible two-step water splitting processes", Int. J. Hydrogen Energy, Vol. 18, No. 5, 1993, pp. 369-376 https://doi.org/10.1016/0360-3199(93)90214-U
  4. Sang Bum Han, Tae Bum Kang, Oh Shim Joo and Kwang Deog Jung, "$NiFe_2O_4$ 금속 산화물의 열화학싸이클에 의한 물분해 수소생산기술", 한국수소 및 신에너지학회, Vol. 19, No. 2, 2008, pp. 132-138
  5. Y. Tamaura, M. Kojima, T. Sano, Y. Ueda, N. Hasegawa, M. Tsuji, "Thermodynamic evaluation of water splitting by a cation- excessive (Ni, Mn) ferrite", Int. J. Hydrogen Energy, Vol. 23, No. 12, 1998, pp. 1185-1191 https://doi.org/10.1016/S0360-3199(98)00007-X
  6. H. Ishihara, H. Kaneko, T. Yokoyama, A. Fuse, N. Hasekawa and Y. Tamaura, "Hydrogen production through two-step water splitting using YSZ(Ni, Fe) system for solar hydrogen production", Proceeding of ASME International Solar Energy Conference (ISEC) 2005, Orlando. FL, ASME, New York, paper No. ISEC 2005-76151
  7. Y. Tamaura, S. Mechaimonchit and T. Katsura, "The formation of V-bearing ferrite by aerial oxidation of an aqueous suspension", J. Inorg. Nucl. Chem, Vol. 43, 1981, pp. 671-675 https://doi.org/10.1016/0022-1902(81)80201-1
  8. T. Kodama, Y. Kondoh, A. Kiyama, K-I. Shimizu, "Hydrogen production by solar thermochemical water-splitting / methane-reforming process.", In:M. D. Thornbloom, S. A. Jones, Editors, Proceeding of ASME International Solar Energy Conference (ISEC) 2003 (Hawaii, 2003), ASME, New York (2003) ISEC2003-44037 (CD-ROM publication)
  9. N. Gokon, T. Mizuno, S. Takahashi and T. Kodama, "A two-step water-splitting with ferrite particles and its new reactor concept wsing an internally circulating fluidized bed", Proceeding of ASME International Solar Energy conference (ISEC) 2006, Denver, Co, J. H. Morehouse, and M. Krarti. eds., ASME, New York. Paper No. ISEC 2006-99063
  10. T. Kodama, Y. Nakamura, T. Mizuno, "A two-step thermochemical water splitting by Iron-oxide on stabilized zirconia", Solar Energy, Vol. 128, 2006, ASME, 3
  11. 한상범, 강태범, 주오심, 정광덕, "$NiFe_2O_4$를 이용한 열화학 사이클 $H_2$ 제조", 한국수소 및 신에너지학회, Vol. 14, No. 4, 2003, pp. 298-304
  12. M. Kojima, T. Sano, Y. Wada, T. Yamamoto, M. Tsuji and Y, Tamaura, "Thermochemical decomposition of $H_2O$ to $H_2$ on cation-excess ferrite", J. Phys. Chem. solids Vol. 57, No. 1, 1996, pp. 1757-1763 https://doi.org/10.1016/0022-3697(96)00328-9
  13. N. Gokon, T. Hasegawa, S. Takahashi, T. Kodama, "Thermochemical two-step water-splitting for hydrogen production using Fe-YSZ particles and a ceramic foam device", Energy, Vol. 33, 2008, pp. 1407-1416 https://doi.org/10.1016/j.energy.2008.04.011
  14. 이동희, 김홍순, 차광서, 박주식, 강경수, 김영호, "열화학 수소 제조를 위한 금속 치환 페라이트 매체의 부분 환원 및 물 분해 특성", 한국수소 및 신에너지학회, Vol. 18, No. 4, 2007, pp. 356-364
  15. K. Ehrensberger, P. Kuhn, V. Shklover, H. Oswald, "Temporary phase segregation processes during the oxidation of $(Fe_{0.7}Mn_{0.3})_{0.99}O$ in $N_2$ - $H_2O$ atmosphere", Solid State Ionics, Vol. 90, 1996, pp. 75-81 https://doi.org/10.1016/S0167-2738(96)00376-1
  16. 손현명, 박주식, 이상호, 황갑진, 김종원, 이진배, "물 분해 수소 제조를 위한 금속산화물들의 반응 특성", 한국수소 및 신에너지학회, Vol. 14, No. 3, 2003, pp. 268-275
  17. Y. Tamaura, A. Steinfeld, P. Kuhn, K. Ehrensberger, "Production of solar hydrogen by a novel, 2-step, water- splitting thermochemical cycle", Energy, Vol. 20, No. 4, 1995, pp. 325-330 https://doi.org/10.1016/0360-5442(94)00099-O
  18. M. Inoue, N. Hasegawa, R. Uehara, N. Gokon, H. Kaneko and Y. Tamaura, "Solar hydrogen generation with $H_2O/ZnO/ MnFe_2O_4$ system", Solar Energy, Vol. 76, 2004, pp. 309-315 https://doi.org/10.1016/j.solener.2003.08.033
  19. T. Kodama, N. Gokon, T. Mizuno, Y. Nakamura, "Iron-containing Yttria-stabilized zirconia system for Two-step thermochemical water splitting", Solar Energy, Vol. 130, 2008, ASME, 011018-1 https://doi.org/10.1115/1.2807197
  20. T. Nakamura, Hydrogen production from water utilizing solar heat at high temperatures, Solar Energy, Vol. 19, 1977, pp. 467-475 https://doi.org/10.1016/0038-092X(77)90102-5
  21. Sang Bum Han, Tae Bum Kang, Oh Shim Joo and Kwang Deog Jung, "Water splitting for hydrogen production with ferrites", Solar Energy, Vol. 81, No. 5, 2007, pp. 623-628 https://doi.org/10.1016/j.solener.2006.08.012
  22. T. Kodama, Y. Kondoh, R. Yamamoto, N. Satoh, "Thermochemical Hydrogen production by a redox system of $ZrO_2$-supported Co(II)-ferrite", Solar Energy, Vol. 78, 2005, pp. 623-631 https://doi.org/10.1016/j.solener.2004.04.008
  23. T. Kodama, N. Gokon, R. Yamamoto, "Thermochemical Two-step water splitting by $ZrO_2$-supported $Ni_xFe_{3-x}O_4$ for solar hydrogen production", Solar Energy, Vol. 82, 2008, pp. 73-79 https://doi.org/10.1016/j.solener.2007.03.005
  24. K. Ehrensberger, A. Frei, P. Kuhn, H. Oswald, P. Hug, "Comparative experimental investigations of the water-splitting reaction with iron oxide $Fe_{1−y}O$ and iron manganese oxides $(Fe_{1−x}Mn_x)_{1−y}O$", Solid State Ionics, Vol. 78, 1995, pp. 151-160 https://doi.org/10.1016/0167-2738(95)00019-3
  25. S. Abanades and G. Flamant, "Thermochemical hydrogen production from a two-step solar-driven water- splitting cycle based on cerium oxides", J. Solar Energy, Vol. 80, No. 12, 2006, pp. 1611-1623 https://doi.org/10.1016/j.solener.2005.12.005