Reaction Characteristics of 2-step Methane Reforming over [Cu, Ni] Frrite/$ZrO_2$

[CU, Ni] ferrite/$ZrO_2$ 상에서 2단계 메탄 개질 반응 특성

  • Yoo, Byoung-Kwan (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National Univ.) ;
  • Cha, Kwang-Seo (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National Univ.) ;
  • Kim, Hong-Soon (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National Univ.) ;
  • Kang, Kyoung-Soo (Hydrogen Energy Research Group, Korea Institute of Energy Research) ;
  • Park, Chu-Sik (Hydrogen Energy Research Group, Korea Institute of Energy Research) ;
  • Kim, Young-Ho (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National Univ.)
  • 유병관 (충남대학교 정밀응용화학과) ;
  • 차광서 (충남대학교 정밀응용화학과) ;
  • 김홍순 (충남대학교 정밀응용화학과) ;
  • 강경수 (한국에너지기술연구원) ;
  • 박주식 (한국에너지기술연구원) ;
  • 김영호 (충남대학교 정밀응용화학과)
  • Published : 2008.12.30

Abstract

2-step methane reforming, consisting of syn-gas production and water splitting step, was carried out over Cu-ferrite/$ZrO_2$. To improve the reactivity over Cu-ferrite/$ZrO_2$ presenting low reactivity in 2-step methane reforming, the addition of Ni was considered. As the results, the added Ni to Cu-ferrite/$ZrO_2$ improved the reactivity in syn-gas production step. However, (Cu, Ni) ferrite/$ZrO_2$ showed carbon deposition in syn-gas production step when an excess Ni was added. Furthermore, (Cu, Ni) ferrite/$ZrO_2$ showed the high durability without the deactivation of the medium during repeated ten cycles, although it showed more deposited carbon than the medium without Ni.

Keywords

2-step methane reforming;Synthesis gas;Hydrogen;Ferrite;Copper;Nickel

References

  1. D. L. Trimm, "Catalysts for the control of coking during steam reforming", Catal. Today, Vol. 49, No. 1-3, 1999, p. 3 https://doi.org/10.1016/S0920-5861(98)00401-5
  2. G. J. Hwang, C. S. Park, S. H. Lee, I. T. Seo, and J. W. Kim, "Ni-Ferrite-Based Thermochemical Cycle for Solar Hydrogen Production", J. Ind. Eng. Chem., Vol. 10, No. 6, 2004, p. 889
  3. N. M. Rodriguez, M. S. Kim, and R. T. K. Baker, "Deactivation of copper nickel-catalysts due to changes in surface composition", J. Catal., Vol. 140, No. 1, 1993, p. 16 https://doi.org/10.1006/jcat.1993.1065
  4. D. L. Trimm, "Control of coking", Chem. Eng. Process, Vol. 18, No. 3, 1984, p. 137 https://doi.org/10.1016/0255-2701(84)80003-3
  5. 차광서, 이동희, 조원준, 이영석, 김영호, "페라이트계 금속 산화물 매체 상에서 열화학 메탄 개질 반응 특성", 한국수소 및 신에너지학회 논문집, Vol. 18, No. 2, 2007, p. 140
  6. T. Kodama, "High-temperature solar chemistry for converting solar heat to chemical fuels", Prog. Energy Combust. Sci., Vol. 29, No. 6, 2003, p. 567 https://doi.org/10.1016/S0360-1285(03)00059-5
  7. 이동희, 김홍순, 차광서, 박주식, 강경수, 김영호, "열화학 수소 제조를 위한 금속 치환 페라이트 매체의 부분 환원 및 물 분해 특성", 한국수소 및 신에너지학회 논문집, Vol. 18, No. 4, 2007, p. 356
  8. T. Kodama, T. Shimizu, T. Satoh, and K.-I. Shimizu, "Stepwise production of CO-rich syngas and hydrogen via methane reforming by a $WO_3$-redox catalyst", Energy, Vol. 28, No. 11, 2003, p. 1055 https://doi.org/10.1016/S0360-5442(03)00093-8
  9. D. L. Trimm, "Coke formation and minimization during steam reforming reactions", Catal. Today, Vol. 37, No. 3, 1997, p. 233 https://doi.org/10.1016/S0920-5861(97)00014-X
  10. T. Kodama, H. Ohtake, S. Matsumoto, A. Aoki, T. Shimizu, and Y. Kitayama, "Thermochemical methane reforming using a reactive $WO_3$/W redox system", Energy, Vol. 25, No. 5, 2000, p. 411 https://doi.org/10.1016/S0360-5442(99)00084-5
  11. T. Kodama, T. Shimizu, T. Satoh, M. Nakata, K.-I. Shimizu, "Stepwise production of CO-rich syngas and hydrogen via solar methane reforming by using a Ni(II)-ferrite redox system", Solar Energy, Vol. 73, No. 5, 2002, p. 363 https://doi.org/10.1016/S0038-092X(02)00112-3
  12. T. Shimizu, K. Shimizu, Y. Kitayama, and T. Kodama, "Thermochemical methane reforming using $WO_3$ as an oxidant below 1173 K by a solar furnace simulator", Solar Energy, Vol. 71, No. 5, 2001, p. 315 https://doi.org/10.1016/S0038-092X(01)00058-5
  13. 차광서, 김홍순, 이동희, 조원준, 이영석, 김영호, "2단계 열화학 메탄 개질을 위한 Cu/Fe/Zr-혼합 산화물 매체 내 Cu 첨가 효과", 공업화학, Vol. 18, No. 6, 2007, p. 618
  14. A. Steinfeld, P. Kuhn, and J. Karni, "High-temperature solar thermochemistry: Production of iron and synthesis gas by $Fe_3O_4$-reduction with methane", Energy, Vol. 18, No. 3, 1993, p. 239 https://doi.org/10.1016/0360-5442(93)90108-P
  15. 21C 프론티어 수소에너지 기술개발 사업단, "수소에너지", 도서출판 아진, 서울, 2005, p. 137
  16. W. Liu and M. Flytzani-Stephanopoulos, "Total Oxidation of Carbon Monoxide and Methane over Transition Metal Fluorite Oxide Composite Catalysts : I. Catalyst Composition and Activity", J. Catal., Vol. 153, No. 2, 1995, p. 304 https://doi.org/10.1006/jcat.1995.1132
  17. 차광서, 류재춘, 이동희, 김영호, 박주식, 김종원, "$ZrO_2$ 첨가 $MnO_2/Mn_2O_3/NaOH$ 계를 이용한 열화학적 물분해 수소제조 실험 연구", 한국수소 및 신에너지학회 논문집, Vol. 17, No. 4, 2006, p. 353
  18. F. Cavani, F. Trifiro, and A. Vaccari, "Hydrotalcite-type anionic clays: Preparation, properties and applications", Catal. Today, Vol. 11, No. 2, 1991, p. 173 https://doi.org/10.1016/0920-5861(91)80068-K