DOI QR코드

DOI QR Code

Enhancement of Catalytic Activity of Pt/Alumina by a Novel Pretreatment Method for the CO Oxidation for Fuel Cell Applications

연료전지용 CO의 산화를 위한 백금/알루미나 촉매의 성능향상에 관한 연구

  • Jo, Myung-Chan (Department of Advanced Materials Engineering, Dongseo University)
  • Published : 2008.12.31

Abstract

Hydrogen gas is used as a fuel for the proton exchange membrane fuel cell (PEMFC). Trace amount of carbon monoxide present in the reformate $H_2$ gas can poison the anode of the PEMFC. Therefore, preferential oxidation (PROX) of CO is essential for reducing the concentration of CO from a hydrogen-rich reformate gas. In this study, conventional Pt/$Al_2O_3$ catalyst was prepared for the preferential oxidation of CO. The effects of catalyst preparation method, additive, and hydrogen on the performances of PROX reaction of CO were investigated. Water treatment and addition of Ce enhanced catalytic activity of the Pt/$Al_2O_3$ catalyst at low temperature below $100^{\circ}C$.

Keywords

Fuel cell;Catalyst;Carbon monoxide;Preferential oxidation

References

  1. Manasilp A., Gulari E., 2002, Selective oxidation over Pt/Alumina catalysts for fuel cell applications, Appl. Catal. B: Environ., 37, 17-25 https://doi.org/10.1016/S0926-3373(01)00319-8
  2. Marino F., Descorme C., Duprez D., 2004, Noble metal catalysts for the preferential oxidation of carbon monoxide in the presence of hydrogen, Appl. Catal. B: Environ., 54, 59-66 https://doi.org/10.1016/j.apcatb.2004.06.008
  3. Son I. H., Shamsuzzoha M., Lane A. M., 2002, Promotion of Pt/$\Upsilon$-$Al_2O_3$ by new pretreatment for low-temperature preferential oxidation of CO in $H_2$ for PEM fuel cells, J. Catal., 210, 460-465 https://doi.org/10.1006/jcat.2002.3707
  4. Schbert M. M., Kahlich M. J., Gasteiger H. A., Behm R. J., 1999, Correlation between CO surface coverage and selectivity/kinetics for the preferential CO oxidation over Pt/$\Upsilon$-$Al_2O_3$ and Au/$\Box$-$Fe_2O_3$: an in-situ DRIFTS study, J. Power Sources, 84, 175-182 https://doi.org/10.1016/S0378-7753(99)00314-6
  5. Kahlich M. J., Gasteiger H. A., Behm R. J., 1998, Preferential oxidation of CO over Pt/$\Upsilon$-$Al_2O_3$ and Au/$\Box$-$Fe_2O_3$: reactor design calculations and experimental results, J. New Mater. Electrochem. Syst., 1, 39-46
  6. Korotkikh O., Farrauto R., 2000, Selective catalytic oxidation of CO in $H_2$: fuel cell applications, Catal. Today, 62, 249-254 https://doi.org/10.1016/S0920-5861(00)00426-0
  7. Suh D. J., Kwak C, Kim J. H., Kwon S. M., Park T. J., 2005, Removal of carbon monoxide from hydrogen-rich fuels by selective low-temperature oxidation over base metal added platinum catalysts, J. Power Sources, 142, 70-74 https://doi.org/10.1016/j.jpowsour.2004.09.012
  8. Serre C., Garin F., Helot G., Maire G., 1993, Reactivity of Pt/$Al_2O_3$ and Pt-$CeO_2/Al_2O_3$ catalysts for the oxidation of carbon monoxide by oxygen, J. Catal., 141, 9-20 https://doi.org/10.1006/jcat.1993.1114
  9. Komai, S., Yazawa, Y., Satsuma, A., Hattori, T., 2005, Determination of metal dispersion of Pt/$CeO_2$ catalyst by CO-pulse method, J. Jap. Pet. Inst., 48, 173-177 https://doi.org/10.1627/jpi.48.173
  10. Oh S. H., Sinkevitch R. M., 1993, Carbon monoxide removal from hydrogen-rich fuel cell feedstreams by selective catalytic oxidation, J. Catal., 142, 254-262 https://doi.org/10.1006/jcat.1993.1205
  11. Igarashi H., Uchida H., Suzuki M., Sasaki Y., Watanabe M., 1997, Removal of carbon monoxide from hydrogen-rich fuels by selective oxidation over platinum catalyst supported on zeolite, Appl. Catal. A: Gen., 159, 159-169 https://doi.org/10.1016/S0926-860X(97)00075-6
  12. Hasegawa Y., Kusakabe K., Morooka S., 2001, Selective oxidation of carbon monoxide in hydrogen-rich mixtures by permeation through a platinum-loaded Y-type zeolite membrane, J. Mem. Sci., 190, 1-8 https://doi.org/10.1016/S0376-7388(00)00672-4
  13. Wootsch A., Descorme C., Duprez D., 2004, Preferential oxidation of carbon monoxide in the presence of hydrogen (PROX) over ceria-zirconia and alumina-supported Pt catalysts, J. Catal., 225, 259-266 https://doi.org/10.1016/j.jcat.2004.04.017