DOI QR코드

DOI QR Code

Generalized Linear Mixed Model for Multivariate Multilevel Binomial Data

다변량 다수준 이항자료에 대한 일반화선형혼합모형

Lim, Hwa-Kyung;Song, Seuck-Heun;Song, Ju-Won;Cheon, Soo-Young
임화경;송석헌;송주원;전수영

  • Published : 2008.12.31

Abstract

We are likely to face complex multivariate data which can be characterized by having a non-trivial correlation structure. For instance, omitted covariates may simultaneously affect more than one count in clustered data; hence, the modeling of the correlation structure is important for the efficiency of the estimator and the computation of correct standard errors, i.e., valid inference. A standard way to insert dependence among counts is to assume that they share some common unobservable variables. For this assumption, we fitted correlated random effect models considering multilevel model. Estimation was carried out by adopting the semiparametric approach through a finite mixture EM algorithm without parametric assumptions upon the random coefficients distribution.

Keywords

GLMM;multi-level;correlated random effects;NPML

References

  1. Aitkin, M. (1999). A general maximum likelihood analysis of variance components in generalized linear models, Biometrics, 55, 117-128 https://doi.org/10.1111/j.0006-341X.1999.00117.x
  2. Abramowitz, M. and Stegun, I. A. (1972). Handbook of Mathematical Functions, Dover, New York
  3. Kreft, I. G. G. and de Leeuw, J. (1998). Introducing Multilevel Modeling, Sage Publications, London
  4. Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determi- nation, Biometrika, 82, 711-732 https://doi.org/10.1093/biomet/82.4.711
  5. Raudenbush, S. W. and Bryk, A. S. (2002). Hierarchical Linear Models: Applications and Data Analysis Methods, 2nd Edition, Sage, London
  6. Petris, G. and Tardella, L. (2003). A geometric approach to transdimensional MCMC, The Canadian Journal of Statistics/La Revue Canadienne de Statistique, 31, 469-482 https://doi.org/10.2307/3315857
  7. McLachlan, G. and Peel, D. (2000). Finite Mixture Models, John Wiley & Sons, New York
  8. Goldstein, H. (1995). Multilevel Statistical Models, Edward Arnold, London
  9. Aitkin, M. and Longford, N. T. (1986). Statistical modelling issues in school effectiveness studies, Journal of the Royal Statistical Society, Series A, 149, 1-43
  10. Snijders, T. A. B. and Bosker, R. J. (1999). Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modelling, Sage, London
  11. Aitkin, M., Anderson, D. and Hinde, J. (1981). Statistical modelling of data on teaching styles, Journal of the Royal Statistical Society, Series A, 144, 419-461 https://doi.org/10.2307/2981826
  12. Golub, G. H. and Welsch, J. H. (1969). Calculation of Gaussian quadrature rules, Mathematics of Compu-tation, 23, 221-230 https://doi.org/10.2307/2004418
  13. Schall, R. (1991). Estimation in generalized linear models with random effects, Biometrika, 78, 719-727 https://doi.org/10.1093/biomet/78.4.719