DOI QR코드

DOI QR Code

Wavelength Interrogation Technique for Bragg Reflecting Strain Sensors Based on Arrayed Waveguide Grating

도파로 어레이 격자를 이용한 광섬유 브래그 스트레인 센서의 반사파장 신호 복원 기술

  • Seo, Jun-Kyu (Nano-Bio Photonics Lab., Department of Electronics Engineering, Pusan National University) ;
  • Kim, Kyung-Jo (Nano-Bio Photonics Lab., Department of Electronics Engineering, Pusan National University) ;
  • Oh, Min-Cheol (Nano-Bio Photonics Lab., Department of Electronics Engineering, Pusan National University) ;
  • Lee, Sang-Min (Ship Welding Strength Lab, Naval Architecture and Ocean Engineering Dept, Pusan National University) ;
  • Kim, Young-Jae (Ship Welding Strength Lab, Naval Architecture and Ocean Engineering Dept, Pusan National University) ;
  • Kim, Myung-Hyun (Ship Welding Strength Lab, Naval Architecture and Ocean Engineering Dept, Pusan National University)
  • 서준규 (부산대학교 전자공학과 나노바이오광소자연구실) ;
  • 김경조 (부산대학교 전자공학과 나노바이오광소자연구실) ;
  • 오민철 (부산대학교 전자공학과 나노바이오광소자연구실) ;
  • 이상민 (부산대학교 조선해양공학과 선체용접강도실험실) ;
  • 김영제 (부산대학교 조선해양공학과 선체용접강도실험실) ;
  • 김명현 (부산대학교 조선해양공학과 선체용접강도실험실)
  • Published : 2008.02.29

Abstract

Fiber-optic strain sensors based on Bragg reflection gratings produce the change of reflection spectrum when an external stress is applied on the sensor. To measure the Bragg reflection wavelength in high speed, an arrayed waveguide grating device is incorporated in this work. By monitoring the output power from each channel of the AWG, the peak wavelength corresponding to the applied strain could be obtained. To enhance the accuracy of the AWG wavelength interrogation system, a chirped fiber Bragg grating with a 3-dB bandwith of 5.4 nm is utilized. The high-speed response of the proposed system is demonstrated by measuring a fast varying strain produced by the damped oscillation of a cantilever. An oscillation frequency of 17.8 Hz and a damping time constant of 0.96 second are obtained in this measurement.

References

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, 'Fiber grating sensors,' J. Lightwave Technol., Vol. 15, No. 8, pp. 1442-1463, 1997 https://doi.org/10.1109/50.618377
  2. W. L. Schulz, E. Udd, J. M. Seim, and G. E. McGill, 'Advanced fiber grating strain sensor systems for bridges, structures, and highway,'Proc. SPIE., Vol. 3325, pp. 212-221, 1998 https://doi.org/10.1117/12.310610
  3. Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, 'High tunable Bragg grating in single-mode polymer optical fibers,' IEEE Photon. Technol. Lett., Vol. 11, No. 3, pp. 352-354, 1999 https://doi.org/10.1109/68.748232
  4. B. Bhola, H. C. Song, H. Tazawa, and W. H. Steier, 'Polymer microresonator strain sensors,' IEEE Photon. Technol. Lett., Vol. 17, No. 4, pp. 867-869, 2005 https://doi.org/10.1109/LPT.2005.843952
  5. A. D. Kersey, T. A. Berkoff, and W. W. Morey, 'Multiplexed fiber Bragg grating strain sensor system with a fiber Fabry-Perot wavelength filter,' Opt, Lett., Vol. 18, No. 16, pp. 1370-1372, 1993 https://doi.org/10.1364/OL.18.001370
  6. M. Song, S. Yin, and P. B. Ruffin, 'Fiber Bragg grating strain sensor demodulation with quadrature sampling of a Mach-Zehnder interferometer,' Appl. Opt., Vol. 93, No. 7, pp. 1106-1111, 2000
  7. A. Hongo, S. Kojima and S. Komatsuzaki, 'Application of fiber Bragg grating sensors and high-speed interrogation techniques,' Struct. Control Health Monit., Vol. 12, pp.269-282, 2000 https://doi.org/10.1002/stc.70
  8. Y. Sano, and T. Yoshino, 'Fast optical wavelength interrogator employing arrayed waveguide grating for distributed fiber Bragg grating sensors,' J. Lightwave Technol., Vol. 21, No. 1, pp. 132-139, 2003 https://doi.org/10.1109/JLT.2003.808620
  9. C. Y. Lin, L. A. Wang, and G. W. Chern, 'Corrugate longperiod fiber gratings as strain, torsion, and bending sensors,' J. Lightwave Technol., Vol. 19, No. 8, pp. 1159-1168, 2001 https://doi.org/10.1109/50.939797
  10. D. C. C. Norman, D. J. Webb, and R. D. Pechstedt, 'Interrogation of fiber Bragg grating sensors using an arrayed waveguide grating,' Meas. Sci. Technol., Vol. 16, pp. 691- 698, 2005 https://doi.org/10.1088/0957-0233/16/3/011