DOI QR코드

DOI QR Code

Calculations of the Trapping Force of Optical Tweezers using FDTD Method

FDTD 방법을 이용한 광집게의 포획 힘 계산

  • Sung, Seung-Yong (Department of Mechatronics, Gwangju Institute of Science and Technology) ;
  • Lee, Yong-Gu (Department of Mechatronics, Gwangju Institute of Science and Technology)
  • 성승용 (광주과학기술원 기전공학과) ;
  • 이용구 (광주과학기술원 기전공학과)
  • Published : 2008.02.29

Abstract

Optical tweezers are a tool that can use a tightly focused laser beam to trap and manipulate micron-sized dielectric particles that are immersed in a medium with lower refractive index. In this paper, the calculation of the trapping force of optical tweezers is presented. A nonparaxial Gaussian beam is used to represent a tightly focused Gaussian beam, and the FDTD (Finite-Difference Time-Domain) method is used for computing the electromagnetic field distributions in the dielectric medium. Scattered-field formulation is used for analytical expression of the incident fields. Using the electromagnetic field distribution from FDTD simulation, the trapping force is calculated based on Maxwell's stress tensor.

References

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and Steven Chu, 'Observation of a single-beam gradient force optical trap for dielectric particles,' Optics Letters, vol. 11, no. 5, pp. 288-290, 1986 https://doi.org/10.1364/OL.11.000288
  2. Steven Chu, 'Laser manipulation and atoms and particles,'Science, vol. 253, no. 5022, pp. 861-866, 1991 https://doi.org/10.1126/science.253.5022.861
  3. A. Ashkin, J. M. Dziedzic and T. Yamane, 'Optical trapping and manipulation of single cells using infrared laser beams,' Nature, 330, pp. 769-771, 1987 https://doi.org/10.1038/330769a0
  4. In-Yong Park, Seung-Yong Sung, Jong-Hyun Lee and Yong-Gu Lee, 'Manufacturing micro-scale structures by an optical tweezers system controlled by five finger tips,' J.Micromech. Microeng., vol. 17, pp. 82-89, 2007 https://doi.org/10.1088/0960-1317/17/10/N03
  5. Peter John Rodrigo, Lorand Kelemen, Carlo Amadeo Alonzo, Ivan R. Perch-Nielsen, Jeppe Seidelin Dam, Pal Ormos, and Jesper Gluckstad, '2D optical manipulation and assembly of shape complementary planar microstruc-tures,' Optics Express, vol. 15, No. 14, pp. 9009-9014, 2007 https://doi.org/10.1364/OE.15.009009
  6. A. Ashkin, 'Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,' Biophysics. J., vol. 61, pp. 569-582, 1992 https://doi.org/10.1016/S0006-3495(92)81860-X
  7. Yasuhiro Harada, Toshimitsu Asakura, 'Radiation forces on a dielectric sphere in the Rayleigh scattering regime,' Optics Communications, vol. 124, pp. 529-541, 1996 https://doi.org/10.1016/0030-4018(95)00753-9
  8. Wei Sun, Shi Pan and Yuchi Jiang, 'Computation of the optical trapping force on small particles illuminated with a focused light beam using a FDTD method,' Journal of Modern Optics, vol. 53, no. 18, pp. 2691-2700, 2006 https://doi.org/10.1080/09500340600829077
  9. J. A. Stratton, Electromagnetic Theory (McGraw-Hill Inc., New York and London, 1941), Chap. 2
  10. Guoquan Zhou, Ruipin Chen, and Junlang Chen, 'Propagation of non-paraxial nonsymmetrical vector Gaussian beam,' Optics Communications, vol. 259, pp. 32-39, 2006 https://doi.org/10.1016/j.optcom.2005.08.063
  11. Kane S. Yee, 'Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media,' IEEE Transactions on Antennas and Propagation, AP-14, vol. 3, pp. 302-307, 1966
  12. Allen Taflove and Suans C. Hangess, Computational Electrodynamics, The Finite-Difference Time-Domain Method Third Edition (Artech House Inc., Norwood, MA, 2005)
  13. T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, A. I. Bioshop, 'Numerical modeling of optical trapping,'Computer Physics Communications, vol. 142, pp. 468-471, 2001 https://doi.org/10.1016/S0010-4655(01)00391-5
  14. Robert M. Simmons, Jeffrey T. Finer, Steven Chu, and James A. Spudich, 'Quantitative Measurements of Force and Displacement Using an Optical Trap,' Biophysical Journal, vol. 70, pp. 1813-1822, 1996 https://doi.org/10.1016/S0006-3495(96)79746-1