DOI QR코드

DOI QR Code

Comparison of Evapotranspiration Estimation Approaches Considering Grass Reference Crop

증발산 산정 방법들의 비교 - 잔디기준작물을 중심으로

  • Rim, Chang-Soo (Dept. of Civil and Environmental Engineering, Chungwoon University)
  • 임창수 (청운대학교 철도행정토목학과)
  • Published : 2008.02.29

Abstract

Five representative reference evapotranspiration(RET) equations were selected, and these equations were compared with pan evaporation by correlation analysis. Pan coefficients were also estimated. Furthermore, five selected RET equations were compared to find the similarity among those at the 21 meteorological stations located in South Korea. Five RET equations selected from 4 different category were Penman(combination approach), FAO Penman-Monteith(FAO P-M) (single source approach), Makkink and Priestley-Taylor (radiation approach) and Hargreaves(temperature approach) equations. In this study, the geographical and topographical conditions were considered for the selection of study stations. The daily meteorological data measured from 1970 at an interval of 5 years were applied in this study. The evapotranspiration estimates obtained by applying evapotranspiration equations were evaluated with numerical and graphical methods. The correlation coefficients between pan evaporation and RET in study stations were above 0.9 indicating very high correlation; however, the slopes of the individual regression lines show the values greater or less than 1.0. Hargreaves equation(temperature approach) shows the most similar evapotranspiration estimates to those of FAO P-M equation from 12 study stations, which are located near to seashore except Daegu station. On the other hand, Priestley-Taylor equation(radiation approach) shows the most similar evapotranspiration estimates to those of FAO P-M equation from 8 study stations, which are located in inland.

References

  1. 김성원, 김형수 (2007). '비선형 증발량 및 증발산량 시계열의 모형화를 위한 신경망-유전자 알고리즘 모형1. 모형의 이론과 적용.' 한국수자원학회논문집, 한국수자원학회, 제40권, 제1호, pp. 73-88 https://doi.org/10.3741/JKWRA.2007.40.1.073
  2. 김현수, 정상옥 (1999). '우리나라 주요지점의 기준작물증발산량 산정과 비교.' 한국관개배수, 제6권, 제2호, pp. 37-46
  3. 오남선, 이길하 (2004). '일단위 온도에 기초한 증발산량의 산정.' 한국수자원학회논문집, 한국수자원학회, 제37권, 제6호, pp. 479-485
  4. 유승환, 최진용, 장민원 (2006). '논벼에 대한 Penman-Monteith와 FAO Modified Penman공식의 작물계수산정.' 한국농공학회논문집, 한국농공학회, 제49권, 제1호, pp. 13-23 https://doi.org/10.5389/KSAE.2006.48.1.013
  5. 임혁진, 권형중, 배덕효, 김성준 (2006). 'CA-Markov기법을 이용한 기후변화에 따른 소양강댐 유역의 수문분석.' 한국수자원학회논문집, 한국수자원학회,제39권, 제5호, pp. 453-466 https://doi.org/10.3741/JKWRA.2006.39.5.453
  6. 조재경 (2002). '강우의 지표침투율 추정법.' 농어촌과환경, 제12권, 제3호, pp. 121-131
  7. 허승오, 정강호, 하상건, 김정규 (2006). 'FAOPenman-Monteith 모형의 증발산량 산정에 이용되는 기상요소의 평가.' 한국토양비료학회지, 한국토양비료학회, 제39권, 제5호, pp. 274-279
  8. Alkaeed, O., Flores, C., Jinno, K., and Tsutsumi, A. (2006).'Comparison of several reference evapotranspiration methods for Itoshima Peninsula area, Fukuoka, Japan.' Memoirs of the Faculty of Engineering, Kyushu University, Vol. 66, No. 1, pp. 1-14
  9. Allen, R.G., Smith, M., Perrier, A., and Periira, L.S. (1994).'An update for the definition of reference evapotranspiration.' ICID Bull., Vol. 43, No. 2, pp. 1-34
  10. Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (1998). Crop evapotranspiration-guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, FAO
  11. Amatya, D.M, Skaggs, R.W., and Gregory, J.D. (1995).'Comparison of methods for estimating REF-ET.' Journal of Irrigation and Drainage Engineering, Vol. 121, No. 6, pp. 427-435 https://doi.org/10.1061/(ASCE)0733-9437(1995)121:6(427)
  12. Burt, C.M., Mutziger, A.J., Allen, R.G., and Howell, T.A. (2002). Evaporation from irrigated agricultural land in California. Report No. 02-001, Irrigation and Research Training Center, CA., pp. 1-51
  13. Chen, D., Gao, G., Xu, C.-Y., Guo, J., and Ren, G. (2005).'Comparison of the Thornthwaite method and pan data with the standard Penman-Monteith estimates of reference evapotranspiration in China.' Climate Research, Vol. 28, pp. 123-132 https://doi.org/10.3354/cr028123
  14. Cuenca, R.H. (1989). Irrigation system design: an engineering approach. Prentice Hall, Eaglewood Cliffs, N.J., 133p
  15. Droogers, P. and Allen, R.G. (2002).'Estimating reference evapotranspiration under inaccurate data conditions.' Irrigation and Drainage Systems, Vol. 16, pp. 33-45 https://doi.org/10.1023/A:1015508322413
  16. Fontenot, R.L. (2004). An evaluation of reference evapotranspiration models in Louisina. M.S. thesis, Louisiana State University, Louisiana, pp. 83
  17. Fox, D. G. (1981).'Judging air quality model performance: A summary of the AMS workshop on dispersion model performance.' Bull. Am. Meteorol. Soc., No. 62, pp. 599-609 https://doi.org/10.1175/1520-0477(1981)062<0599:JAQMP>2.0.CO;2
  18. George, B.A., Reddy, B.R.S., Raghuwanshi, N.S., and Wallender, W.W. (2002).'Decision support system for estimating reference evapotranspiration.' Journal of Irrigation and Drainage Engineering, Vol. 128, No. 1, pp. 1-10 https://doi.org/10.1061/(ASCE)0733-9437(2002)128:1(1)
  19. Hargreaves, G.H. and Samani, Z.A. (1985).'Reference crop evapotranspiration from temperature.' Appl. Engr. Agric., Vol. 1, No. 1, pp. 96-99 https://doi.org/10.13031/2013.26773
  20. Howell, T.A., Evette, S.R., Schneider, A.D., Todd, R.W., and Tolk, J.A. (1998). 'Evapotranspiration of irrigated fescue grass in a semi-arid environment.' Paper No. 982117, ASAE meeting Presentation, MI., pp. 1-23
  21. Im, S., Kim, H., Kim, C., and Jang, C.. (2004).' A simple approach for estimating annual evapo- transpiration with climate data in Korea.' Water Engineering Research, Vol. 5, No. 4, pp. 185-193
  22. Irmak, S., Irmak, A., Allen, R.G., and Jones, J.W. (2003).'Solar and net radiation-based equations to estimate reference evapotranspiration in humid climates.' Journal of Irrigation and Drainage Engineering, ASCE, Vol. 129, Vol. 5, pp. 336-347 https://doi.org/10.1061/(ASCE)0733-9437(2003)129:5(336)
  23. Irmak, S., Allen, R.G., and Whitty, E.B. (2003).'Daily grass and alfalfa-reference evapo- transpiration estimates and alfalfa-to-grass evapotranspiration ratios in Florida.' Journal of Irrigation and Drainage Engineering, Vol. 129, No. 5, pp. 360-370 https://doi.org/10.1061/(ASCE)0733-9437(2003)129:5(360)
  24. Irmak, S., Dukes, M.D., and Jacobs, J.M. (2005).'Using modified Bellani plate evapotranspiration gauges to estimate short canopy reference evapotranspiration.' J. of Irrigation and Drainage Eng., Vol. 131, No. 2, pp. 164-175 https://doi.org/10.1061/(ASCE)0733-9437(2005)131:2(164)
  25. Itenfisu, D., Elliot, R.L., Allen, R.G., and Walter, I.A. (2003).'Comparison of reference evapotrans- piration calculations as part of the ASCE standardization effort.' J. Irrig. Drain. Eng., Vol. 129, No. 6, pp. 153-159
  26. IWMI, International Water management Institute. (2000).'World water and climate atlas.' http://www.iwmi.org
  27. Jensen, M.E., Burman, R.D., and Allen, R.G. (1990). Evapotranspiration and irrigation water requirements. ASCE Manual and Reports on Engineering Practice No. 70
  28. Lage, M., Bamouh, A., Karrou, M., and Mourid, M. El. (2003).'Estimation of rice evapotranspiration using a microlysimeter technique and comparison with FAO Penman-Monteith and Pan evaporation methods under Moroccan conditions.' Agronomie, Vol. 23, pp. 625-631 https://doi.org/10.1051/agro:2003040
  29. Lee, T.S., Najim, M.M.M., and Aminul, M.H. (2004).'Estimating evapotranspiration of irrigated rice at the west coast of the peninsular of Malaysia.' Journal of Applied Irrigation Science, Vol. 39, No. 1, pp. 103-117
  30. Lu, J., Sun, G., McNulty, S.G., and Amatya, D.M. (2005).'A comparison of six potential evapo- transpiration methods for regional use in the southeastern United States.' J. of the American Water Resources Association, Vol. 41, No. 3, pp. 621-633 https://doi.org/10.1111/j.1752-1688.2005.tb03759.x
  31. Makkink, G.F. (1957).'Testing the Penman formula by means of lysimeters.' J. Instit. Water Engineers, Vol. 11, pp. 277-288
  32. Monteith, J.L. (1965).'Evaporation and environment.' Symp. Soc. Exp. Biol., Vol. 19, pp. 205-234
  33. Penman, H.L. (1948).'Natural evaporation from open water, bare soil, and grass.' Proc. Roy. Soc. London, Vol. A193, pp. 120-146
  34. Pereira, A.R., Villa Nova, N.A., Pereira, A.S., and Barbieri, V. (1995).'A model for the class A pan coefficient.' Agricultural and Forest Meteorology, Vol. 76, pp. 75-82 https://doi.org/10.1016/0168-1923(94)02224-8
  35. Priestley, C.H.B. and Taylor, R.J. (1972).'On the assessment of the surface heat flux and evaporation using large-scale parameters.' Monthly Weather Review, Vol. 100, pp. 81-92 https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
  36. Qiu, G.Y., Miyamoto, K., Sase, S., Gao, Y., Shi, P., and Yano, T. (2002).'Comparison of the three temperature model and conventional models for estimating transpiration.' Japanese Agricultural Research Quarterly, Vol. 36, No. 2, pp. 73-82 https://doi.org/10.6090/jarq.36.73
  37. Rijtema, P.E. (1965).'An analysis of actual evaporation.' Agric. Res. Reports, Vol. 659, p.107
  38. Temesgen, B., Eching, S., Davifoof, B., and Frame, K. (2005).'Comparison of some reference evapotranspiration equations for California.' Journal of Irrigation and Drainage Engineering, Vol. 131, No. 1, pp. 73-84 https://doi.org/10.1061/(ASCE)0733-9437(2005)131:1(73)
  39. Trajkovic, S. (2005).'Temperature-based approaches for estimating reference evapotranspiration.' J. of Irrigation and Drainage Engineering, Vol. 131, No. 4, pp. 316-323 https://doi.org/10.1061/(ASCE)0733-9437(2005)131:4(316)
  40. Walter, I.A., Allen, R.G., Elliott, R., Mecham, B., Jensen, M.E., Itenfisu, D., Howell, T.A., Snyder, R., Brown, P., Echings, S., Spofford, T., Hattendorf, M., Cuenca, R.H., Wright, J.L., and Martin, D. (2000).'ASCE standardized reference evapotranspiration equation.' Proc. National Irrigation Symposium, ASAE, Phoenix, AZ, pp. 209-215
  41. Xu, C.-Y. and Chen, D. (2005).'Comparison of seven models for estimation of evpotranspiration and groundwater recharge using lysimeter measurement data in Germany.' Hydrological Processes, Vol. 19, pp. 3717-3734 https://doi.org/10.1002/hyp.5853
  42. Xu, C.-Y. and Singh, V.P. (2002).'Cross comparison of experimental equations for calculating potential evapotranspiration with data from swizerland.' Water Resources Management, Vol. 16, pp. 197-219 https://doi.org/10.1023/A:1020282515975
  43. Gavilan, P. (2002). La adveccion de calor sensible en el valle medio del Guadalquivir y su influencia en la medida y la estimacion de la evapotranspiracion de referencia. Thesis Doctoral presentada en la Escuela Tecnica Superior de Ingenieros Agronomos y de Montes de Cordoba

Cited by

  1. Parameterization Analysis of SWAT Model Considering the Uncertainty vol.12, pp.2, 2012, https://doi.org/10.9798/KOSHAM.2012.12.2.173
  2. Climate Aridity/humidity Characteristics in Seoul According to Changes in Temperature and Precipitation Based on RCP 4.5 and 8.5 vol.47, pp.5, 2014, https://doi.org/10.3741/JKWRA.2014.47.5.421
  3. Parameter Regionalization of Hargreaves Equation Based on Climatological Characteristics in Korea vol.46, pp.9, 2013, https://doi.org/10.3741/JKWRA.2013.46.9.933
  4. Landuse oriented Water Balance Analysis Method by the Hydrological Model BAGLUVA based on Soil and Vegetation vol.43, pp.4, 2015, https://doi.org/10.9715/KILA.2015.43.4.098
  5. Assessment of actual evapotranspiration using modified satellite-based priestley-taylor algorithm using MODIS products vol.49, pp.11, 2016, https://doi.org/10.3741/JKWRA.2016.49.11.903
  6. Design and Implementation of Reference Evapotranspiration Database for Future Climate Scenarios vol.22, pp.4, 2016, https://doi.org/10.7851/ksrp.2016.22.4.071
  7. Prediction of Typhoon-Induced Flood Flows at Ungauged Catchments Using Simple Regression and Generalized Estimating Equation Approaches vol.10, pp.5, 2018, https://doi.org/10.3390/w10050647
  8. Analysis of Reference Evapotranspiration Change in Korea by Climate Change Impact vol.18, pp.7, 2018, https://doi.org/10.9798/KOSHAM.2018.18.7.71