DOI QR코드

DOI QR Code

Hole Mobility Characteristics of Biaxially Strained SiGe/Si Channel Structure with High Ge Content

고농도의 Ge 함량을 가진 Biaxially Strained SiGe/Si Channel Structure의 정공 이동도 특성

  • 정종완 (세종대학교 나노공학과)
  • Published : 2008.01.01

Abstract

Hole mobility characteristics of two representative biaxially strained SiGe/Si structures with high Ge contents are studied, They are single channel ($Si/Si_{1-x}Ge_x/Si$ substrate) and dual channel ($Si/Si_{1-y}Ge_y/Si_{1-x}Ge_x/Si$ substrate), where the former consists of a relaxed SiGe buffer layer with 60 % Ge content and a tensile-strained Si layer on top, and for the latter, a compressively strained SiGe layer is inserted between two layers, Owing to the hole mobility performance between a relaxed SiGe film and a compressive-strained SiGe film in the single channel and the dual channel, the hole mobility behaviors of two structures with respect to the Si cap layer thickness shows the opposite trend, Hole mobility increases with thicker Si cap layer for single channel structure, whereas it decreases with thicker Si cap layer for dual channel. This hole mobility characteristics could be easily explained by a simple capacitance model.

Keywords

SiGe;Biaxial strain;Hole mobility;High Ge content;Dual channel

References

  1. G. Hock, E. Kohn, C. Rosenblad, H. von Kanel, H.-J. Herzog, and U. Konig, 'High hole mobility in Si Ge channel metal-oxide -semiconductor field- effect transistors grown by plasma- enhanced chemical vapor deposition', Semicond. Sci. Technol. Appl. Phys. Lett., Vol. 76, p. 3920, 2000
  2. J. Welser, J. L. Hoyt, and J. F. Gibbons, 'Electron mobility enhancement in strained -Si n-type metal oxide silicon field-effect transistors', IEEE Electron Devices Lett., Vol. 15, p. 100, 1994 https://doi.org/10.1109/55.285389
  3. K. Rim, J. Chu, H. Chen, K. A. Jenkins, T. Kanarsky, K. Lee, A. Mocuta, H. Zhu, R. Roy, J. Newbury, J. Ott, K. Petrarca, P. Mooney, D. Lacey, S. Koester, K. Chan, D. Boyd, M. Ieong, and H.-S. Wong, 'Characteristics and device design of sub 100-nm strained Si n- and p-MOSFETs', Symp. VLSI Tech. Dig., p. 98, 2002
  4. J. Jung, M. L. Lee, S. Yu, E. A. Fitzgerald, and D. A. Antoniadis, 'Implementation of both high-hole and electron mobility in strained-Si-strained-SiGe on relaxed SiGe virtual substrate', IEEE Electron Device Lett., Vol. 24, p. 460, 2003 https://doi.org/10.1109/LED.2003.814028
  5. M. A. Armstrong, 'Technology for SiGe Heterostructure-Based CMOS Devices', Ph.D Thesis, MIT, 1999
  6. C.W. Leitz, M. T. Currie, M. L. Lee, Z.-Y. Cheng, D. A. Antoniadis, and E. A. Fitzgerald, 'High mobility enhancements in strained-Si/Si Ge p-type metal-oxide- semiconductor field-effect transistor grown on relaxed SiGe virtual substrates', Appl. Phys. Lett., Vol. 79, p. 4246, 2001 https://doi.org/10.1063/1.1423774
  7. M. L. Lee, C. W. Leitz, Z. Cheng, A. J. Pitera, T. Langdo, M. T. Currie, G. Taraschi, E. A. Fitzgerald, and D. A. Antoniadis, 'Strained Ge channel p-type metal-oxide- semiconductor field- effect transistors grown on SiGe virtual substrates', Appl. Phys. Lett., Vol. 79, p. 3344, 2001 https://doi.org/10.1063/1.1417515