DOI QR코드

DOI QR Code

In vitro Development of Interspecies Somatic Cell Nuclear Transfer Embryos Derived from Murine Embryonic Fibroblasts and Bovine Oocytes

  • Yun, J.I. (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University) ;
  • Koo, B.S. (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University) ;
  • Yun, S.W. (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University) ;
  • Lee, Chang-Kyu (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University)
  • Received : 2007.10.27
  • Accepted : 2008.07.26
  • Published : 2008.11.01

Abstract

Interspecies somatic cell nuclear transfer (iSCNT) is a useful method to preserve endangered species and to study the reprogramming event of a nuclear donor cell by the oocyte. Although several studies of iSCNT using murine cells and bovine oocytes have been reported, the development of murine-bovine iSCNT embryos beyond the 8-cell stage has not been successful. In this paper, we examined the developmental potential of embryos reconstructed with a murine embryonic fibroblast as the nuclear donor and a bovine oocyte as the cytoplasm recipient. The reconstructed embryos were cultured in CZB (murine medium) or CR1aa (bovine medium). In addition, for the development of a murine-bovine iSCNT blastocyst, the antioxidant ${\beta}$-mercaptoethanol (${\beta}ME$) was supplemented to CR1aa medium. Furthermore, to verify the mouse genome activation in murine-bovine iSCNT embryos, RT-PCR analysis of murine Xist was performed. The development of the murine-bovine iSCNT embryos cultured in CR1aa was significantly higher than that in CZB (p<0.05). With respect to the effect of BME on the development of the murine-bovine iSCNT blastocyst, addition of BME produced a significant increase in blastocyst development (p<0.05). Karyotype analysis confirmed that the reconstructed embryos were derived from murine cells (40XX). The Xist gene was gradually increased from the 8-cell stage to the blastocyst stage. This is the first report of blastocyst development of iSCNT embryos derived from murine somatic cells and bovine oocytes. These results demonstrate that bovine cytoplasm can support the development of later stages of a preimplantation embryo from murine-bovine iSCNT.

Keywords

Murine;Bovine;Interspecies Somatic Cell Nuclear Transfer;${\beta}$-Mercaptoethanol;Xist

References

  1. Wakayama, T., A. C. Perry, M. Zuccotti, K. R. Johnson and R. Yanagimachi. 1998. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394:369-374. https://doi.org/10.1038/28615
  2. White, K. L., T. D. Bunch, S. Mitalipov and W. A. Reed. 1999. Establishment of pregnancy after the transfer of nuclear transfer embryos produced from the fusion of Argali (Ovis ammon) nuclei into domestic sheep (Ovis aries) enucleated oocytes. Cloning 1:47-54. https://doi.org/10.1089/15204559950020085
  3. Wilmut, I., A. E. Schnieke, J. McWhir, A. J. Kind and K. H. S. Campbell. 1997. Viable offspring derived from fet al and adult mammalian cells. Nature 385:810-813. https://doi.org/10.1038/385810a0
  4. Winger, Q., J. A. Hill, T. Shin, A. J. Watson, D. C. Kraemer and M. E. Westhusin. 2000. Genetic reprogramming of lactate dehydrogenase, citrate synthase and phosphofructokinase mRNA in bovine nuclear transfer embryos produced using bovine fibroblast cell nuclei. Mol. Reprod.Dev. 56:458-464. https://doi.org/10.1002/1098-2795(200008)56:4<458::AID-MRD3>3.0.CO;2-L
  5. Takahashi, M., T. Nagai, S. Hamano, M. Kuwayama, N. Okamura and A. Okano. 1993. Effect of thiol compounds on in vitro development and intracellular glutathione content of bovine embryos. Biol. Reprod. 49:228-232. https://doi.org/10.1095/biolreprod49.2.228
  6. Rosenkrans, C. F., G. Q. Zeng, G. T. McNamara, P. K. Schoff and N. L. First. 1993. Development of bovine embryos in vitro is affected by energy substrate. Biol. Reprod. 49:459-462. https://doi.org/10.1095/biolreprod49.3.459
  7. Sansinena, M. J., D. Hylan, K. Hebert, R. S. Denniston and R. A. Godke. 2005. Banteng (Bos javanicus) embryos and pregnancies produced by interspecies nuclear transfer. Theriogenol. 63:1081-1091. https://doi.org/10.1016/j.theriogenology.2004.05.025
  8. Shin, T., D. Kraemer, J. Pryor, L. Liu, J. Rugila, L. Howe, S. Buck, K. Murphy, L. Lyons and M. Westhusin. 2002. A cat cloned by nuclear transplantation. Nature 415:859. https://doi.org/10.1038/nature723
  9. Relford, N.A., A. J. Watson and G. A. Schulz. 1990. Transition from the maternal to embryonic control in early mammalian development: a comparison of several species. Mol. Reprod. Dev. 26:90-100. https://doi.org/10.1002/mrd.1080260113
  10. Park, E. S., W. S. Hwang, S. K. Kang, B. C. Lee, J. Y. Han and J. M. Lim. 2004. Improved embryo development with decreased apoptosis in blastomeres after the treatment of cloned bovine embryos with ${\beta}$-mercaptoethanol and Hemoglobin. Mol. Reprod. Dev. 67:200-206. https://doi.org/10.1002/mrd.10392
  11. Polejaeva, I. A., S. H. Chen, T. D. Vaught, R. L. Page, J. Mullins, S. Ball, Y. Dai, J. Boone, S. Walker, D. L. Ayares, A. Colman and K. H. Campbell. 2000. Cloned pigs produced by nuclear transferring adult somatic cells. Nature 407:86-90. https://doi.org/10.1038/35024082
  12. Quinn, P. and G. M. Harlow. 1978. The effect of oxygen on the development of preimplantation mouse embryos in vitro. J. Exp. Zool. 206:73-80. https://doi.org/10.1002/jez.1402060108
  13. Rideout, W. M., K. Eggan and R. Jaenish. 2001. Nuclear cloning and epigenetic reprogramming of the genome. Sci. 293:1093-1098. https://doi.org/10.1126/science.1063206
  14. Niemann, H., C. Wrenzycki, A. Lucas-Hahn, T. Brambrink, W. A. Kues and J. W. Carnwath. 2002. Gene expression patterns in bovine in vitro produced and nuclear transfer-derived embryos and their implications for early development. Clon. Stem Cell 4:29-38. https://doi.org/10.1089/153623002753632020
  15. Noda, Y., H. Matsumoto, Y. Umaoka, K. Tatsumi and T. Mori. 1991. Improvement of superoxide radicals in mouse two-cell block phenomenon. Mol. Reprod. Dev. 28:356-360. https://doi.org/10.1002/mrd.1080280408
  16. Oguara, A., K. Inoue, K. Takano, T. Wakayama and R. Yanagimachi. 2000. Birth of mice after nuclear transfer by electrofusion using tail tip cells. Mol. Reprod. Dev. 57:55-59. https://doi.org/10.1002/1098-2795(200009)57:1<55::AID-MRD8>3.0.CO;2-W
  17. Pabon, J. E. J., W. E. Findley and W. E. Gibbons. 1989. The toxic effect of short exposure to the atmospheric oxygen concentration on early mouse embryonic development. Fertil. Steril. 51:896-900. https://doi.org/10.1016/S0015-0282(16)60688-X
  18. Park, S. H., M. R. Shin and N. H. Kim. 2004. Bovine oocyte cytoplasm supports nuclear remodeling but not reprogramming of murine fibroblast cells. Mol. Reprod. Dev. 68:25-34. https://doi.org/10.1002/mrd.20050
  19. Yanxin, L., D. Yunping, D. Weihua, Z. Chunjiang, W. Haiping, W. Lili, L. Rong, L. Ying, W. Rong and L. Ning. 2006. Cloned endangered species takin (Budorcas taxicolor) by interspecies nuclear transfer and comparison of the blastocyst development with yak (Bos grunnuens) and bovine. Mol. Reprod. Dev. 73:189-195. https://doi.org/10.1002/mrd.20405
  20. Laibrfied-Retledge, M. L., T. Dominko, E. S. Critser and J. K. Crister. 1999. Tissue maturation in vivo and in vitro: Gamete and early embryos ontogeny, In: Reproductive tissue banking (Ed. A. M. Karow and J. M. Crister). New York Press 22-137.
  21. Lanza, R. P., J. B. Cibelli, F. Diaz, C. T. Moraes, P. W. Farin, C. E. Farin, C. J. Hammer, M. D. West and P. Damiani. 2000. Cloning of an endangered species (Bos gaurus) using interspecies nuclear transfer. Cloning 2:79-90. https://doi.org/10.1089/152045500436104
  22. Loi, P., G. Ptak, B. Barboni, J. Fulka, P. Cappai and M. Clinton. 2001. Genetic rescue of an endangered mammal by cross-species nuclear transfer using post-mortem somatic cells. Nat. Biotechnol. 19:962-964. https://doi.org/10.1038/nbt1001-962
  23. Maurizio, Z. and B. Michele. 2002. Mouse xist express begins at zygotic genome activation and timed by z zygotic clock. Mol. Rep. Dev. 61:14-20. https://doi.org/10.1002/mrd.1126
  24. Kato, Y., T. Tani, Y. Sotomaru, K. Kurokawa, J. Kato, H. Doguchi, H. Yasue and Y. Tsunoda. 1998. Eight calves cloned from somatic cells of a single adult. Sci. 282:2095-2098. https://doi.org/10.1126/science.282.5396.2095
  25. Kay, G. F., G. D. Penny, D. Patel, A. Ashworth, N. Brockdorff and S. Rastan. 1993. Expression of Xist during mouse development suggests a role in the initiation of X Chromosome inactivation. Cell 72:171-182. https://doi.org/10.1016/0092-8674(93)90658-D
  26. Kay, G. F., S. C. Barton, M. A. Surani and S. Rastan. 1994. Imprinting and X chromosome counting mechanisms determine Xist expression in early mouse development. Cell 77:639-650. https://doi.org/10.1016/0092-8674(94)90049-3
  27. Kenneth, L. 2001. Can cloning wave endangered species?. Curr. Biol. 11:245-246. https://doi.org/10.1016/S0960-9822(01)00126-9
  28. Kin, M. K., G. Jang, H. J. Oh, F. Yuda, H. J. Kim, W. S. Whang, M. S. Hossein, J. J. Kim, N. S. Shin, S. K. Kang and B. C. Lee. 2007. Endangered wolves cloned from adult somatic cells. Cloning Stem Cells 9:130-137. https://doi.org/10.1089/clo.2006.0034
  29. Kitiyanant, Y., J. Saikhun, B. Chaisalee, K. L. White and K. Pavasuthipaisit. 2001. Somatic cell cloning in buffalo (Bubalus bubalis): Effects of interspecies cytoplasmic recipients and activation procedures. Cloning Stem Cells 3:97-104. https://doi.org/10.1089/153623001753205052
  30. De La Fuente, R., A. Hahnel, P. R. Rasrur and W. A. King. 1999. X inactive-specific transcript (Xist) expression and X chromosome inactivation in the preattachment bovine embryo. Biol. Reprod. 60:769-775. https://doi.org/10.1095/biolreprod60.3.769
  31. Dindot, S. V., P. W. Farin, C. E. Rarin, J. Romano, S. Walker, C. Long and J. A. Piedrahita. 2004. Epigenetic and genomic imprinting analysis in nuclear transfer derived Bos gaurus/Bos Taurus hybrid fetuses. Biol. Reprod. 71:470-478. https://doi.org/10.1095/biolreprod.103.025775
  32. Dominko, T., M. Mitalipova, B. Haley, Z. Beyhan, E. Memili, B. Mckusick and N. L. First. 1999. Bovine oocyte cytoplasm supports development of embryos produced by nuclear transfer of somatic cell nuclei from various mammalian species. Biol. Reprod. 60:1496-1502. https://doi.org/10.1095/biolreprod60.6.1496
  33. Galli, C., I. Laguina, G. Crotti, S. Colleoni, P. Turini, N. Ponderato, R. Duchi and G. Lazzari. 2003. A cloned horse born to its dam twin. Nature 424:635.
  34. Chen, D. Y., Q. Y. Sun, G. P. Liu, G. P. Li, L. Lian, M. K. Wang, Z. M. Han, X. F. Song, J. S. Li, Q. Sun, Y. C. Chen, Y. P. Chang and B. Ding. 1999. The giant panda (Ailuroda melanoleuca) somatic nucleus can dedifferentiate in rabbit ooplasm and support early development the reconstructed egg. Sci. China (Series C) 29:324-330.
  35. Chesne, P., P. G. Adenot, C. Viglietta, M. Baratte, L. Boulanger and J. P. Renard. 2002. Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat. Biotechnol. 20:366-369. https://doi.org/10.1038/nbt0402-366
  36. Constance, H. 2003. First cloned mule races to finish line. Sci. 300:1354.
  37. Daniels, R., V. Hall and A. O. Trounson. 2000. Analysis of gene transcription in bovine nuclear transfer embryos reconstructed with granulosa cell nuclei. Biol. Reprod. 63:1034-1040. https://doi.org/10.1095/biolreprod63.4.1034
  38. Baguisi, A., E. Behboodi, D. T. Melican, J. S. Pollock, M. M. Destrempes, C. Cammuso, J. L. Williams, S. D. Nims, C. A. Porter, P. Midura, M. J. Palacios, S. L. Ayres, R. S. Denniston, M. L. Hayes, C. A. Ziomek, H. M. Meade, R. A. Godke, W. G. Gavin, Y. Overstrom and Y. Echelard. 1999. Production of goats by somatic cell nuclear transfer. Nat. Biotechnol. 17:456-461. https://doi.org/10.1038/8632
  39. Biggers, J. D., L. K. McGinnis and M. Raffin. 2000. Aminoacids and preimplantation development of the mouse in protein-free potassium simplex optimized medium. Biol. Reprod. 63:281-293. https://doi.org/10.1095/biolreprod63.1.281
  40. Boiani, M., S. Eckardt, H. R. Scholer and K. J. McLaughlin. 2002. Oct4 distribution and level in mouse clones: Consequences for pluripotency. Genes Dev. 16:1209-1219. https://doi.org/10.1101/gad.966002
  41. Caamano, J. N., Z. A. Ryoo, J. A. Thomas and C. R. Youngs. 1996. ${\beta}$-mercaptoethanol enhances blastocyst formation rate of bovine in vitro-matured/in vitro fertilized embryos. Bio. Reprod. 55:1179-1184. https://doi.org/10.1095/biolreprod55.5.1179
  42. Bagis, H. and H. Odaman Mercan. 2004. Effect of chemically defined culture medium supplemented with ${\beta}$-mercaptoethanol and amino acids on implantation and development of different stage in vivo- or in vitro-derived mouse embryos. Mol. Reprod. Dev. 69:52-59. https://doi.org/10.1002/mrd.20120
  43. Arat, S., S. J. Rzucidlo and S. L. Stice. 2003. Gene expression and in vitro development of inter-species nuclear transfer embryos. Mol. Reprod. Dev. 66:334-342. https://doi.org/10.1002/mrd.10362
  44. Daniels, R., S. Lowell, V. Bolton and M. Monk. 1997. Transcription of tissue-specific genes in human preimplantation embryos. Human Reprod. 12:2251-2256. https://doi.org/10.1093/humrep/12.10.2251
  45. Umaoka, Y., Y. Noda, K. Narimoto and T. Mori. 1992. Effects of oxygentoxicity on early development of mouse embryos. Mol. Reprod. Dev. 31:28-33. https://doi.org/10.1002/mrd.1080310106

Cited by

  1. Establishment and characterization of a fibroblast cell line derived from Texel sheep vol.87, pp.3, 2009, https://doi.org/10.1139/O09-005