Determination of Trace Silicon in Uranium Dioxide by UV-VIS Spectrophometry

UV-VIS 분광광도법을 이용한 이산화우라늄 중 미량 규소 분석

  • Choi, Kwang-Soon (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Joe, Kihsoo (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Han, Sun-Ho (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Song, Kyuseok (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
  • 최광순 (한국원자력연구원 원자력화학연구부) ;
  • 조기수 (한국원자력연구원 원자력화학연구부) ;
  • 한선호 (한국원자력연구원 원자력화학연구부) ;
  • 송규석 (한국원자력연구원 원자력화학연구부)
  • Received : 2008.08.06
  • Accepted : 2008.10.06
  • Published : 2008.10.25

Abstract

Uranium dioxide was dissolved with nitric acid and a trace amount of HF. The analytical conditions of a spectrophotometer were investigated to determine a trace amount of silicon in the uranium matrices without a separation process. The effects of a trace amount of HF on the determination of silicon were examined. Boric acid was used to eliminate HF the interference in the colorimetric process. The recovery of silicon in the presence of a trace amount of HF in uranium solutions with or without saturated boric acid was $103.3{\pm}0.8$ and $76.6{\pm}6.8%$, respectively. The amount of saturated boric acid did not affect the recovery of the silicon. Therefore it was possible for this procedure to measure a trace amount of silicon in a uranium matrix without a separation by a UV-VIS spectrophotometry.

Keywords

uranium dioxide;silicon;saturated boric acid;spectrophotometry

Acknowledgement

Supported by : 교육과학기술부

References

  1. C. H. Lee, M. Y. Suh, K. S. Choi, J. S. Kim, Y. J. Park and W. H. Kim, Anal. Chim. Acta, 475, 171(2003) https://doi.org/10.1016/S0003-2670(02)01035-8
  2. F. T. Birks, Anal. Chem., 23, 793(1951) https://doi.org/10.1021/ac60053a034
  3. S. L. Grassimo and D. N. Hume, J. Inorg. Nuc. Chem., 33, 421(1971) https://doi.org/10.1016/0022-1902(71)80384-6
  4. A. G. I. Dalvi, C. S. Deodhar and B. D. Joshi, Talanta, 24, 143(1976) https://doi.org/10.1016/0039-9140(77)80170-7
  5. F. De Smedt, G. Stevens, S. De Gendt, I. Cornelissen, S. Arnauts, M. Meuris, M. M. Heyns and C. Vinckier, J. Electrochem. Soc., 146, 1873(1999) https://doi.org/10.1149/1.1391858
  6. 1987 Annual Book of ASTM Standards, Vol. 12.01, Nuclear Energy(1), R. A. Storer, Easton, Philadelphia, U.S.A., 1987, 350
  7. Z. Rajkovic, Z. Anal. Chem., 255, 190(1971) https://doi.org/10.1007/BF00424952
  8. E. A. Huff and E. P. Horwitz, Spectrochimica Acta, 40B, 279(1985)
  9. J. D. H. Strickland, J. Am. Chem. Soc., 74, 862(1952) https://doi.org/10.1021/ja01124a002
  10. R. K. Malhotra and K. Satyanarayana, Talanta, 50, 601(1999) https://doi.org/10.1016/S0039-9140(99)00145-9
  11. D. A. White, Fathurrachman, Hydrometallurgy, 36, 161(1994) https://doi.org/10.1016/0304-386X(94)90003-5
  12. T. K. Seshagiri, Y. Babu, M. L. Jayanth Kumar, A. G. I. Dalvi, M. D. Sastry and B. D. Joshi, Talanta, 31, 773(1984) https://doi.org/10.1016/0039-9140(84)80197-6
  13. A. A. Arkegar, M. J. Kulkarni, J. N. Mathur and A. G. Page, Talanta, 56, 591(2002) https://doi.org/10.1016/S0039-9140(01)00629-4
  14. A. S. Al-Ammar, H. A. Hamid, B. H. Rashid and H. M. Basheer, J. Chromator., 537, 287(1991) https://doi.org/10.1016/S0021-9673(01)88902-0
  15. R. Guenther and R. H. Gale, Anal. Chem., 22, 1510(1950) https://doi.org/10.1021/ac60048a012
  16. M. A. Floyd, R. W. Morrow and R. B. Farar, Spectrochimica Acta, 38B, 303(1983)