Analysis of caffeine in aqueous sample by hollow fiber-liquid microextraction (HF-LPME)

HF-LPME를 이용한 수용액 시료중의 카페인 분석

  • Received : 2008.01.23
  • Accepted : 2008.03.17
  • Published : 2008.04.25

Abstract

A method for the determination of trace amount of caffeine in urine and various drink samples using hollow fiber-liquid phase microextraction (HF-LPME) and capillary gas chromatograph/nitrogen phosphorus detector (GC/NPD) has been established. HF-LPME method has been optimized with respect to several experimental parameters including the effects of the hollow fiber length, extraction solvent, stirring mode, pH and salt concentration for the determination of caffeine from aqueous samples. The correlation coefficient of calibration curve for caffeine was 0.9994. The average recovery was 102%(n=3). The established method is feasible for the determination of trace amounts of caffeine in several aqueous sample. The limit of detection (LOD) and the limit of quantitation (LOQ) have been found to be 2.5 and 10 ng/mL, respectively. The established HF-LPME method for the analysis of caffeine from aqueous sample can be used for the determination of biological, food and environmental samples.

Keywords

References

  1. R. E. Majors. LC.GC Int. 4, 27, 1879(1993)
  2. B. M. Mahara, J. Borossay and K. Torkos, Microchemical Journal, 58, 31-38(1998). https://doi.org/10.1006/mchj.1997.1517
  3. A. Balinova, Journal of Chromatography A, 754, 125-135(1996) https://doi.org/10.1016/S0021-9673(96)00409-8
  4. E. Psillakis and N. Kalogerakis, Trends in Analytical Chemistry, 22, No. 10(2003)
  5. L. Zhao and H. K. Lee, Journal of Chromatography A, 919, 381-388(2001) https://doi.org/10.1016/S0021-9673(01)00816-0
  6. J. A. Jonsson and L. Mathiasson, Trends in Analytical Chemistry, 18, No. 5(1999). https://doi.org/10.1016/S0165-9936(98)00076-4
  7. D. A. Lambropoulou and T. A. Albanis, J. Boichem. Biophys. Methods, 70, 195-228(2007) https://doi.org/10.1016/j.jbbm.2006.10.004
  8. H. H. Wan and M. W. Wong, J. Chromatogr. A, 754, 43-47(1996). https://doi.org/10.1016/S0021-9673(96)00537-7
  9. H.-A. Lakso and W. Fang Ng, Anal. Chem, 69, 1866-1872(1997) https://doi.org/10.1021/ac960997h
  10. C. Basheer, V. Suresh, R. Renu and H. K. Lee, J. Chromatogr. A, 1033, 213-220(2004) https://doi.org/10.1016/j.chroma.2004.01.050
  11. C. Basheer, R. Balasubramanian and H. K. Lee, J. Chromatogr. A, 1016, 11-20(2003) https://doi.org/10.1016/S0021-9673(03)01295-0
  12. L. Hou, G. Shen and H. K. Lee, J. Chromatogr. A, 985, 107-116(2003) https://doi.org/10.1016/S0021-9673(02)01827-7
  13. C. Wang, C. Li, X. Zang, D. Han, Z. Liu and Z. Wang, J. Chromatogr. A, 1143, 270-275(2007). https://doi.org/10.1016/j.chroma.2007.01.027
  14. 명승운, 정홍래, Anal. Sci. & Tech. 18, 224-231(2005)
  15. S.-W. Myung, S.-H. Yoon and M.-S. Kim, Analyst, 128, 1443-1446(2003). https://doi.org/10.1039/b312227c
  16. K. E. Rasmussen and S. Pedersen-Bjergaard, Trend in Analycal Chemistry, Vol. 1(2004).
  17. J. A. Jonsson and L. Mathiasson, J. Chromatogr. A, 902, 205-225(2000). https://doi.org/10.1016/S0021-9673(00)00922-5
  18. H. G. Ugland, M. Krogh and K. E. Rasmussen, J. Chromatogr. B, 749, 85-92(2000) https://doi.org/10.1016/S0378-4347(00)00382-0
  19. J.-S. Chiang and S.-D. Huang, Talanta, 71, 882-886(2007) https://doi.org/10.1016/j.talanta.2006.05.065
  20. S.-P. Huang and S.-D. Huang, J. Chromatogr. A, 1135, 6-11(2006) https://doi.org/10.1016/j.chroma.2006.09.027
  21. B.-W. Lai, B.-M. Liu, P. K. Malik and H.-F. Wu, Anal. Chim. Acta, 576, 61-66(2006) https://doi.org/10.1016/j.aca.2005.12.039
  22. T. S. Ho, S. P. Bjergaard and K. E. Rasmussen, J. Chromatogr. A, 963, 3-17(2002) https://doi.org/10.1016/S0021-9673(02)00215-7