DOI QR코드

DOI QR Code

A Review of Interactions between Dietary Fiber and the Gastrointestinal Microbiota and Their Consequences on Intestinal Phosphorus Metabolism in Growing Pigs

Metzler, B.U.;Mosenthin, R.

  • Received : 2007.08.15
  • Accepted : 2007.08.24
  • Published : 2008.04.01

Abstract

Dietary fiber is an inevitable component in pig diets. In non-ruminants, it may influence many physiological processes in the gastrointestinal tract (GIT) such as transit time as well as nutrient digestion and absorption. Moreover, dietary fiber is also the main substrate of intestinal bacteria. The bacterial community structure is largely susceptible to changes in the fiber content of a pig's diet. Indeed, bacterial composition in the lower GIT will adapt to the supply of high levels of dietary fiber by increased growth of bacteria with cellulolytic, pectinolytic and hemicellulolytic activities such as Ruminococcus spp., Bacteroides spp. and Clostridium spp. Furthermore, there is growing evidence for growth promotion of beneficial bacteria, such as lactobacilli and bifidobacteria, by certain types of dietary fiber in the small intestine of pigs. Studies in rats have shown that both phosphorus (P) and calcium (Ca) play an important role in the fermentative activity and growth of the intestinal microbiota. This can be attributed to the significance of P for the bacterial cell metabolism and to the buffering functions of Ca-phosphate in intestinal digesta. Moreover, under P deficient conditions, ruminal NDF degradation as well as VFA and bacterial ATP production are reduced. Similar studies in pigs are scarce but there is some evidence that dietary fiber may influence the ileal and fecal P digestibility as well as P disappearance in the large intestine, probably due to microbial P requirement for fermentation. On the other hand, fermentation of dietary fiber may improve the availability of minerals such as P and Ca which can be subsequently absorbed and/or utilized by the microbiota of the pig's large intestine.

Keywords

Dietary Fiber;Bacteria;Fermentation;Phosphorus;Pigs

References

  1. Loh, G., M. Eberhard, R. M. Brunner, U. Hennig, S. Kuhla, B. Kleesen and C. C. Metges. 2006. Inulin alters the intestinal microbiota and short-chain fatty acid concentrations in growing pigs regardless of their basal diet. J. Nutr. 136:1198- 1202. https://doi.org/10.1093/jn/136.5.1198
  2. Liu, J., D. W. Bollinger, D. R. Ledoux and T. L. Veum. 2000. Effects of dietary calcium:phosphorus ratios on apparent absorption of calcium and phosphorus in the small intestine, cecum, and colon of pigs. J. Anim. Sci. 78:106-109. https://doi.org/10.2527/2000.781106x
  3. Levrat, M.-A., C. Remesy and C. Demigne. 1991. High propionic acid fermentations and mineral accumulation in the cecum of rats adapted to different levels of inulin. J. Nutr. 121:1730- 1737. https://doi.org/10.1093/jn/121.11.1730
  4. Li, D., X. R. Che, Y. Q. Wang, S. Y. Qiao, W. Johnson and P. Thacker. 1999. The effect of calcium level on microbial phytase activity and nutrient balance in swine. Asian-Aust. J. Anim. Sci. 12:197-202. https://doi.org/10.5713/ajas.1999.197
  5. Leser, T. D., R. H. Lindecrona, T. K. Jensen, B. B. Jensen and K. Moller. 2000. Changes in bacterial community structure in the colon of pigs fed different experimental diets and after infection with Brachyspira hyodysenteriae. Appl. Environ. Microbiol. 66:3290-3296. https://doi.org/10.1128/AEM.66.8.3290-3296.2000
  6. Leser, T. D., J. Z. Amenuvor, T. K. Jensen, R. H. Lindecrona, M. Boye and K. Moller. 2002. Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl. Environ. Microbiol. 68:673-690. https://doi.org/10.1128/AEM.68.2.673-690.2002
  7. Legay-Carmier, F. and D. Bauchart. 1989. Distribution of bacteria in the rumen contents of dairy cows given a diet supplement with soya-bean oil. Br. J. Nutr. 61:725-740. https://doi.org/10.1079/BJN19890158
  8. Lengeler, J. W., G. Drews and H. G. Schlegel. 1999. Biology of the prokaryotes. Thieme, Stuttgart, Germany.
  9. Larsen, T. and B. Sandstrom. 1993. Effect of dietary calcium level on mineral and trace element utilization from a rapeseed (Brassica napus L.) diet fed to ileum-fistulated pigs. Br. J. Nutr. 69:211-224. https://doi.org/10.1079/BJN19930023
  10. Lee, S. F., W. Forsberg and L. N. Gibbins. 1985. Cellulolytic activity of Clostridium acetobutylicum. Appl. Environ. Microbiol. 50:220-228.
  11. Kurdi, P., H. W. van Veen, H. Tanaka, I. Mierau, W. N. Konings, G. W. Tannock, F. Tomita and A. Yokota. 2000. Cholic acid is accumulated spontaneously, driven by membrane $\Delta$pH, in many lactobacilli. Appl. Environ. Microbiol. 182:6525-6528.
  12. Kornegay, E. T. and R. J. Moore. 1986. Dietary fiber sources may affect mineral use in swine. Feedstuffs 58:36-49.
  13. Konstantinov, S. R., E. Poznanski, S. Fuentes, A. D. L. Akkermans, H. Smidt and W. M. de Vos. 2006. Lactobacillus sobrius sp. nov., abundant in the intestine of weaning piglets. Int. J. Syst. Evol. Microbiol. 56:29-32. https://doi.org/10.1099/ijs.0.63508-0
  14. Konstantinov, S. R., A. Awati, H. Smidt, B. A. Williams, A. D. L. Akkermans and W. M. de Vos. 2004. Specific response of a novel and abundant Lactobacillus amylorus-like phylotype to dietary prebiotics in the guts of weaning piglets. Appl. Environ. Microbiol. 70:3821-3830. https://doi.org/10.1128/AEM.70.7.3821-3830.2004
  15. Morales, J., J. F. Perez, S. M. Martin-Orue, M. Fondevila and J. Gasa. 2002. Large bowel fermentation of maize or sorghumacorn diets fed as a different source of carbohydrates to Landrace and Iberian pigs. Br. J. Nutr. 88:489-497. https://doi.org/10.1079/BJN2002699
  16. Metzler, B., T. Baumgartel, M. Rodehutscord and R. Mosenthin. 2006. Fermentable carbohydrates affect the chemical composition of the faecal mixed bacterial mass, microbial activity and P metabolism in the large intestine of pigs. In: International Conference on Sustainable Animal Health through Eubiosis - Relevance for Man (Ed. C. Wenk and O. Simon), pp. 27 and CD-Rom, Ascona, Switzerland.
  17. Metzler, B. U. 2007. Effects of fermentable carbohydrates and dietary P supply on bacterial P incorporation, activity and composition. PhD, University of Hohenheim, Stuttgart Germany.
  18. Montagne, L., J. R. Pluske and D. J. Hampson. 2003. A review of interactions between DF and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim. Feed Sci. Technol. 108:95-117. https://doi.org/10.1016/S0377-8401(03)00163-9
  19. Merry, R. J. and A. B. McAllan. 1983. A comparison of the chemical composition of mixed bacteria harvested from the liquid and solid fraction of rumen bacteria. Br. J. Nutr. 50:701- 709. https://doi.org/10.1079/BJN19830142
  20. McCarthy, R. E., S. F.Kotarski and A. A. Salyers. 1985. Location and characteristics of enzymes involved in the breakdown of polygalacturonic acid by Bacteroides thetaiotaomicron. J. Bacteriol. 161:493-499.
  21. McDonald, D. E., D. W. Pethick, B. P. Mullan and D. J. Hampson. 2001. Increasing viscosity of the intestinal contents alters small intestinal structure and intestinal growth, and stimulates proliferation of enterotoxigenic Escherichia coli in newlyweaned pigs. Br. J. Nutr. 86:487-498. https://doi.org/10.1079/BJN2001416
  22. Matsuura, Y. 1991. Pectic acid degrading enzymes from human faeces. Agric. Biol. Chem. 55:885-886. https://doi.org/10.1271/bbb1961.55.885
  23. Martin-Orue, S. M., J. Balcells, F. Zakraoui and C. Castrillo. 1998. Quantification and chemical composition of mixed bacteria harvested from solid fractions of rumen digesta: effect of detachment procedure. Anim. Feed Sci. Technol. 71:269-282. https://doi.org/10.1016/S0377-8401(97)00156-9
  24. Moore, W. E. C., L. V. H. Moore, E. P. Cato, T. D. Wilkins and E. T. Kornegay. 1987. Effect of high-fiber and high-oil diets on the fecal flora of swine. Appl. Environ. Microbiol. 53:1638- 1644.
  25. Mosenthin, R., W. C. Sauer, H. Henkel, F. Ahrens and C. F. M. de Lange. 1992. Tracer studies of urea kinetics in growing pigs: II. The effect of starch infusion at the distal ileum on urea recycling and bacterial nitrogen excretion. J. Anim. Sci. 70:3467-3472. https://doi.org/10.2527/1992.70113467x
  26. Partridge, I. G. 1978b. Studies on digestion and absorption in the intestines of growing pigs. 4. Effects of dietary cellulose and sodium levels on mineral absorption. Br. J. Nutr. 39:539-545. https://doi.org/10.1079/BJN19780069
  27. Partridge, I. G., O. Simon and H. Bergner. 1986. The effects of treated straw meal on ileal and faecal digestibility of nutrients in pigs. Arch. Anim. Nutr. 36:351-359. https://doi.org/10.1080/17450398609425282
  28. Partanen, K., T. Jalava, J. Valaja, S. Perttila, H. Siljander-Rasi and H. Lindeberg. 2001. Effect of dietary carbadox or formic acid and fibre level on ileal and faecal nutrient digestibility and microbial metabolite concentrations in ileal digesta of the pig. Anim. Feed Sci. Technol. 93:137-155. https://doi.org/10.1016/S0377-8401(01)00288-7
  29. Partridge, I. G. 1978a. Studies on digestion and absorption in the intestines of growing pigs. 3. Net movements of mineral nutrients in the digestive tract. Br. J. Nutr. 39:527-537. https://doi.org/10.1079/BJN19780068
  30. Olano-Martin, E., G. R. Gibson and R. A. Rastall. 2002. Comparison of the in vitro bifidogenic properties of pectins and pectic-oligosaccharides. J. Appl. Microbiol. 93:505-511. https://doi.org/10.1046/j.1365-2672.2002.01719.x
  31. Owusu-Asiedu, A., J. F. Patience, B. Laarveld, A. G. van Kessel, P. H. Simmins and R. T. Zijlstra. 2006. Effects of guar gum and cellulose on digesta passage rate, ileal microbiota, energy and protein digestibility, and performance of grower pigs. J. Anim. Sci. 84:843-852. https://doi.org/10.2527/2006.844843x
  32. Mosenthin, R., W. C. Sauer and F. Ahrens. 1994. Dietary pectin's effect on ileal and fecal amino acid digestibility and exocrine pancreatic secretions in growing pigs. J. Nutr. 124:1222-1229. https://doi.org/10.1093/jn/124.8.1222
  33. Nortey, T. N., J. F. Patience, P. H. Simmins, N. L. Trottier and R. T. Zijlstra. 2007. Effects of individual or combined xylanase and phytase supplementation on energy, amino acid, and phosphorus digestibility and growth performance of grower pigs fed wheat-wheat based diets containing wheat millrun. J. Anim. Sci. 85:1432-1443. https://doi.org/10.2527/jas.2006-613
  34. Remesy, C., M.-A. Levrat, L. Gamet and C. Demigne. 1993. Cecal fermentations in rats fed oligosaccharides (inulin) are modulated by dietary calcium level. Am. J. Physiol. 264:G855- G862.
  35. Roediger, W. E. W. 1980. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 21:793- 798. https://doi.org/10.1136/gut.21.9.793
  36. Pie, S., A. Awati, S. Vida, I. Falluel, B. A. Williams and I. P. Oswald. 2007. Effects of added fermentable carbohydrates in the diet on intestinal proinflammatory cytokine-specific mRNA content in weaning piglets. J. Anim. Sci. 85:673-683. https://doi.org/10.2527/jas.2006-535
  37. Pryde, S. E., A. J. Richardson, C. S. Stewart and H. J. Flint. 1999. Molecular analysis of the microbial diversity present in the colonic wall, colonic lumen, and caecal lumen of a pig. Appl. Environ. Microbiol. 65:5372-5377.
  38. Reid, C. A. and K. Hillman. 1999. The effect of retrogradation and amylase/amylopectin ratio on starches and carbohydrates fermentation and microbial populations in the porcine colon. Anim. Sci. 68:503-510. https://doi.org/10.1017/S1357729800050529
  39. Schneeman, B. O. 1987. Dietary fiber and gastrointestinal function. Nutr. Rev. 45:129-132. https://doi.org/10.1111/j.1753-4887.1987.tb06343.x
  40. Sakata, T. and H. Setoyama. 1995. Local stimulatory effect of short-chain fatty acids on the mucus release from the hindgut mucosa of rats (Rattus norvegicus). Comp. Biochem. Physiol. 111:429-432. https://doi.org/10.1016/0300-9629(95)00033-4
  41. Salanitro, J. P., I. G. Blake and P. A. Muirhead. 1977. Types and distribution of anaerobic bacteria in the large intestine of pigs. Appl. Environ. Microbiol. 37:187-193.
  42. Savage, D. C. 1986. Gastrointestinal microflora in mammalian nutrition. Annu. Rev. Nutr. 6:155-178. https://doi.org/10.1146/annurev.nu.06.070186.001103
  43. Ruan, Z., Y.-G. Zahng, Y.-L. Yin, R. L. Huang, S. W. Kim, G. Y. Wu and Z. Y. Deng. 2007. Dietary requirement of dtrue digestible phosphorus and total calcium for growing pigs. Asian-Aust. J. Anim. Sci. 20:1236-1242. https://doi.org/10.5713/ajas.2007.1236
  44. Russell, E. G. 1979. Types and distribution of anaerobic bacteria in the large intestine of pigs. Appl. Environ. Microbiol. 37:187-193.
  45. Spiehs, M. J., M. H. Whitney and G. C. Shurson. 2002. Nutrient database for distiller's dried grains with solubles produced from new ethanol plants in Minnesota and South Dakota. J. Anim. Sci. 80:2639-2645.
  46. Shi, B. M., A. S. Shan and J. M. Tong. 2001. Influence of dietary oligosaccharides on growth performance and intestinal microbial populations of piglets. Asian-Aust. J. Anim. Sci. 14:1747-1751. https://doi.org/10.5713/ajas.2001.1747
  47. Seynaeve, M., G. Janssen, M. Hesta, C. van Nevel and R. O. Wilde. 2000b. Effects of dietary Ca/P ratio, P level and microbial phytase supplementation on nutrient digestibilities in growing pigs: breakdown of phytic acid, partition of P and phytase activity along the intestinal tract. J. Anim. Physiol. Anim. Nutr. 83:193-204. https://doi.org/10.1046/j.1439-0396.2000.00262.x
  48. Seynaeve, M., G. Janssen, M. Hesta, C. van Nevel and R. O. Wilde. 2000a. Effects of dietary Ca/P ratio, P level and microbial phytase supplementation on nutrient digestibilities in growing pigs: prececal, post-ileal and total tract disappearances of OM, P and Ca. J. Anim. Physiol. Anim. Nutr. 83:36-48. https://doi.org/10.1046/j.1439-0396.2000.00246.x
  49. Wenk, C. 2001. The role of DF in the digestive physiology of the pig. Anim. Feed Sci. Technol. 90:21-33. https://doi.org/10.1016/S0377-8401(01)00194-8
  50. Wider, J. 2005. Untersuchungen in vitro zum Phosphor-Bedarf von Mikroorganismen im Pansen. PhD, University of Bonn, Bonn, Germany.
  51. Wood, H. G. and J. E. Clark. 1988. Biological aspects of inorganic polyphosphates. Annu. Rev. Biochem. 57:235-360. https://doi.org/10.1146/annurev.bi.57.070188.001315
  52. Yen, J. T., J. A. Nienaber, D. A. Hill and W. G. Pond. 1991. Potential contribution of absorbed volatile fatty acids to wholeanimal energy requirement in conscious swine. J. Anim. Sci. 69:2001-2012. https://doi.org/10.2527/1991.6952001x
  53. Yin, Y. L., Z. Y. Deng, H. L. Huang, H. Y. Zhong, Z. P. Hou, J. Gong and Q. Liu. 2004. Nutritional and health functions of carbohydrate for pigs. J. Anim. Feed Sci. 13:523-538.
  54. Varel, V. H., J. T. Yen and K. K. Kreikemeier. 1995b. Addition of cellulolytic clostridia to the bovine rumen and pig intestinal tract. Appl. Environ. Microbiol. 61:1116-1119.
  55. Varga, G. A. and E. S. Kolver. 1997. Microbial and animal limitations to fiber digestion and utilization. J. Nutr. 127: 819S-823S. https://doi.org/10.1093/jn/127.5.819S
  56. Wang, J. F., M. Wang, D. G. Lin, B. B. Jensen and Y. H. Zhu. 2006. The effect of source of dietary fiber and starch on ileal and fecal amino acid digestibility in growing pigs. Asian-Aust. J. Anim. Sci. 19:1040-1046. https://doi.org/10.5713/ajas.2006.1040
  57. Varel, V. H., R. S. Tanner and C. R. Woese 1995a. Clostridium herbivorans sp. nov., a cellulolytic anaerobe from the pig intestine. Int. J. Syst. Bacteriol. 45:490-494. https://doi.org/10.1099/00207713-45-3-490
  58. Varel, V. H. and J. T. Yen. 1997. Microbial perspective on fibre utilization by swine. J. Anim. Sci. 75:2715-2722. https://doi.org/10.2527/1997.75102715x
  59. Varel, V. H., W. G. Pond, J. C. Pekas and J. T. Yen. 1982. Influence of high-fiber diet on bacterial populations in gastrointestinal tracts of obese- and lean-genotype pigs. Appl. Environ. Microbiol. 44:107-112.
  60. Varel, V. H., S. J. Fryda and I. M. Robinson. 1984. Cellulolytic bacteria from pig large intestine. Appl. Environ. Microbiol. 47:219-221.
  61. Van Soest, P. J. 1984. Some physical characteristics of DFs and their influence on the microbial ecology of the human colon. Proc. Nutr. Soc. 43:25-33. https://doi.org/10.1079/PNS19840024
  62. Varel, V. H. and W. G. Pond. 1985. Enumeration and activity of cellulolytic bacteria from gestating swine fed various levels of DF. Appl. Environ. Microbiol. 49:858-862.
  63. Vanhoof, K. and R. de Shrijver. 1996. Availability of minerals in rats and pigs fed non-purified diets containing inulin. Nutr. Res. 16:1017-1022. https://doi.org/10.1016/0271-5317(96)00101-7
  64. Van Nevel, C. J. and D. I. Demeyer. 1977. Determination of rumen microbial growth in vitro from $^{32}P$-labelled phosphate incorporation. Br. J. Nutr. 38:101-114. https://doi.org/10.1079/BJN19770066
  65. Theander, O., P. Aman, E. Westerlund and H. Graham. 1994. Enzymatic/chemical analysis of DF. J. AOAC Int. 77:703-709.
  66. Tungland, B. C. and D. Meyer. 2002. Nondigestible oligo- and polysaccharides (dietary fiber): Their physiology and role in human health and food. Comprehensive Reviews in Food Science and Food Safety 1:73-92. https://doi.org/10.1111/j.1541-4337.2002.tb00008.x
  67. Vahjen, W., D. Taras and O. Simon. 2007. Effect of the probiotic Enterococcus faecium NCIMB10415 on cell numbers of total Enterococcus spp., E. faecium and E. faecalis in the intestine of piglets. Curr. Issues Intest. Microbiol. 8:1-8.
  68. Komisarczuk, S., R. J. Merry and A. B. McAllan. 1987b. Effect of different levels of phosphorus on rumen microbial fermentation and synthesis determined using a continuous culture technique. Br. J. Nutr. 57:279-290. https://doi.org/10.1079/BJN19870033
  69. Komisarczuk, S., G. Gaudet, G. Hannequart, G. Fonty and M. Durand. 1988. Effects of a sub-deficiency in phosphorus on some aspects of cellulolytic activity of Bacteroides succinogenes. Repr. Nutr. Dev. 28:79-80. https://doi.org/10.1051/rnd:19881114
  70. Komisarczuk, S., M. Durand, P. Beaumatin and G. Hannequart. 1987a. Effects of phosphorus deficiency on rumen microbial activity associated with the solid and liquid phases of a fermentor (Rusitec). Repr. Nutr. Dev. 27:907-919. https://doi.org/10.1051/rnd:19870703
  71. Jorgensen, H., X.-Q. Zhao and B. Eggum 1996. The influence of DF and environmental temperature on the development of the gastrointestinal tract, digestibility, degree of fermentation in the hind-gut and energy metabolism in pigs. Br. J. Nutr. 75:365-378. https://doi.org/10.1079/BJN19960140
  72. Jongbloed, A. W. 1987. Phosphorus in the feeding of pigs: Effect of diet on the absorption and retention of phosphorus by growing pigs. PhD, University of Lelystad, Lelystad, The Netherlands.
  73. Johnston, S. L., S. B. Williams, L. L. Southern, T. D. Bidner, L. D. Bunting, J. O. Matthews and B. M. Olcott. 2004. Effect of phytase addition and dietary calcium and phosphorus levels on plasma metabolites and ileal and total-tract nutrient digestibility in pigs. J. Anim. Sci. 82:705-714. https://doi.org/10.2527/2004.823705x
  74. Jin, L., L. P. Reynolds, D. A. Redmer, J. S. Caton and J. D. Crenshaw. 1994. Effects of dietary fibre on intestinal growth, cell proliferation, and morphology in growing pigs. J. Anim. Sci. 72:2270-2278. https://doi.org/10.2527/1994.7292270x
  75. Dongowski, G., A. Lorenz and J. Proll. 2002. The degree of methylation influences the degradation of pectin in the intestinal tract of rats in vitro. J. Nutr. 132:1935-1944. https://doi.org/10.1093/jn/132.7.1935
  76. Den Hartog, L. A., J. Huisman, W. J. G. Thielen, G. H. A. Van Schayk, H. Boer and E. J. Weerden. 1988. The effect of including various structural polysaccharides in pig diets on ileal and faecal digestibility of amino acids and minerals. Livest. Prod. Sci. 18:157-170. https://doi.org/10.1016/0301-6226(88)90005-X
  77. Canibe, N., O. Hojberg, S. Hojsgaard and B. B. Jensen. 2005. Feed physical form and formic acid addition to the feed affect the gastrointestinal ecology and growth performance of growing pigs. J. Anim. Sci. 83:1287-1302. https://doi.org/10.2527/2005.8361287x
  78. Cherbut, C., E. Albina, M. Champ, J. L. Doublier and G. Lecannu. 1990. Action of guar gums on the viscosity of digestive contents and on the gastrointestinal motor function in pigs. Digestion 46:205-213. https://doi.org/10.1159/000200347
  79. Bruce, J. A. M. and F. Sundstol. 1995. The effect of microbial phytase in diets for pigs on apparent ileal and faecal digestibility, pH and flow of digesta measurements in growing pigs fed a high-fibre diet. Can. J. Anim. Sci. 75:121-127. https://doi.org/10.4141/cjas95-016
  80. Caldwell, D. R., M. Keeney, J. S. Baron and J. F. Kelley. 1973. Sodium and other inorganic growth requirements of Bacteroides amylophilus. J. Bacteriol. 114:782-789.
  81. Bovee-Oudenhoven, I. M., M. L. Wissink, J. T. Wouters and R. Van der Meer. 1999. Dietary calcium phosphate stimulates intestinal lactobacilli and decreases the severity of a Salmonella infection in rats. J. Nutr. 129:607-612. https://doi.org/10.1093/jn/129.3.607
  82. Breves, G. and B. Schroder. 1991. Comparative aspects of gastrointestinal phosphorus metabolism. Nutr. Res. Rev. 4:125- 140. https://doi.org/10.1079/NRR19910011
  83. Fang, R. J., T. J. Li, F. G. Yin, Y. L. Yin, X. F. Kong, K. N. Wang, Z. Yuan, G. Y. Wu, J. H. He, Z. Y. Deng and M. Z. Fan. 2007. The additivity of true or apparent phosphorus digestibility values in some feed ingredients for growing pigs. Asian-Aust. J. Anim. Sci. 20:1092-1099. https://doi.org/10.5713/ajas.2007.1092
  84. Francis, G. L., J. M. Gawthorne and G. B. Storer. 1978. Factors affecting the activity of cellulases isolated from the rumen digesta of sheep. Appl. Environ. Microbiol. 36:643-649.
  85. Fan, M. Z. and E. J. Squires. 2003. Manipulation of hindgut fermentation to reduce the excretion of selected odor-causing compounds in pig manure. Final project report-supported by Canadian Pork Council (CPC), and the Agriculture, Agri-Food Canada (AAFC) Multiple Partners' Hog Environmental Management Strategy (HEMS) Program. Alberta, Canada.
  86. Durmic, Z., D. W. Pethick, B. P. Mulan, J. M. Accioly, H. Schulze and D. J. Hampson. 2002. Evaluation of large-intestinal parameters associated with dietary treatments designed to reduce the occurrence of swine dysentery. Br. J. Nutr. 88:159- 169. https://doi.org/10.1079/BJN2002607
  87. Ewing, W. N. and D. J. A. Cole. 1994. The living gut. Context Publications, Dungannon, UK.
  88. Durand, M. and S. Komisarczuk. 1988. Influence of major minerals on rumen microbiota. J. Nutr. 118:249-260. https://doi.org/10.1093/jn/118.2.249
  89. Durmic, Z., D. W. Pethik, J. K. Pluske and D. J. Hampson. 1998. Changes in bacterial populations in the colon of pigs fed different sources of DF, and the development of swine dysentery after experimental infection. J. Appl. Microbiol. 85:574-582. https://doi.org/10.1046/j.1365-2672.1998.853539.x
  90. Gardner, R. M., K. C. Doerner and B. A. White. 1987. Purification and characterization of an exo-$\beta$-1,4-glucanase from Ruminococcus flavefaciens FD-1. J. Bacteriol. 169:4581-4588. https://doi.org/10.1128/jb.169.10.4581-4588.1987
  91. Grieshop, C. M., D. E. Reese and G. C. Fahey, Jr. 2001. Nonstarch polysaccharides and oligosaccharides in swine nutrition. In: Swine Nutrition (Ed. A. J. Lewis and L. L. Southern). CRC Press, Boca Raton, Florida, USA. pp. 107-130.
  92. Govers, M. J. A. P. and R. van der Meer. 1993. Effects of dietary calcium and phosphate on the intestinal interactions between calcium, phosphate, fatty acids, and bile acids. Gut 34:365-370. https://doi.org/10.1136/gut.34.3.365
  93. Graham, H., K. Hesselman and P. Aman. 1986. The influence of wheat bran and sugar-beet pulp on the digestibility of dietary components in a cereal-based pig diet. J. Nutr. 116:242-251. https://doi.org/10.1093/jn/116.2.242
  94. Jensen, B. B. 2001. Possible ways of modifying type and amount of products from microbial fermentation in the gut. In: Gut environment of pigs (Ed. A. Piva, K. E. Bach Knudsen and J. E. Lindberg). Nottingham University Press, Nottingham, UK. pp. 181-199.
  95. Jensen, B. B. and H. Jorgensen. 1994. Effect of DF on microbial activity and microbial gas production in various regions of the gastrintestinal tract of pigs. Appl. Environ. Microbiol. 60: 1897-1904.
  96. Hogberg, A., J. E. Lindberg, T. Leser and P. Wallgren. 2004. Influence of cereal non-starch polysaccharides on ileo-caecal and rectal microbial populations in growing pigs. Acta Vet. Scand. 45:87-98. https://doi.org/10.1186/1751-0147-45-87
  97. Huang, R. L., Y. L. Yin, K. P Wang, T. J. Li and J. X. Liu. 2003. Nutritional value of fermented and not fermented material of distiller's grains in pig nutrition. J. Anim. Feed Sci. 12:261-269. https://doi.org/10.22358/jafs/67702/2003
  98. Ide, T., M. Horii, T. Yamamoto and K. Kawashima. 1990. Contrasting effects of water-soluble and water-insoluble dietary fibers on bile acid conjugation and taurine metabolism in the rat. Lipids 25:335-340. https://doi.org/10.1007/BF02544343
  99. Hill, J. E., S. M. Hemmingsen, B. G. Goldade, T. J. Dumonceaux, J. Klassen, R. T. Zijlstra, S. H. Goh and A. G. van Kessel. 2005. Comparison of ileum microflora of pigs fed corn-, wheat-, or barley-based diets by chaperonin-60 sequencing and quantitative PCR. Appl. Environ. Microbiol. 71:867-875. https://doi.org/10.1128/AEM.71.2.867-875.2005
  100. Henriksson, A., L. Andre and P. L. Conway. 1995. Distribution of lactobacilli in the porcine gastrointestinal tract. FEMS Microbiol. Ecol. 16:55-60. https://doi.org/10.1111/j.1574-6941.1995.tb00268.x
  101. Hedemann, M. S., M. Eskildsen, H. N. Laerke, C. Pedersen, J. E. Lindberg, P. Laurinen and K. E. Bach Knudsen. 2006. Intestinal morphology and enzymatic activity in newly weaned pigs fed contrasting fiber concentrations and fiber properties. J. Anim. Sci. 84:1375-1386. https://doi.org/10.2527/2006.8461375x
  102. Heijnen, M.-L. and A. Beynen. 1998. Effect of consumption of uncooked (RS2) and retrograded (RS3) resistant starch on apparent absorption of magnesium, calcium, and phosphorus in pigs. Z. Ernaehrungswiss. 37:13-17. https://doi.org/10.1007/PL00007366
  103. Jensen, N. S. and E. Canale-Parola. 1985. Nutritionally limited pectinolytic bacteria from the human intestine. Appl. Environ. Microbiol. 50:172-173.
  104. Barrera, M., M. Cervantes, W. C. Sauer, A. B. Araiza, N. Torrentera and M. Cervantes. 2004. Ileal amino acid digestibility and performance of growing pigs fed wheat-based diets supplemented with xylanase. J. Anim. Sci. 82:1997-2003. https://doi.org/10.2527/2004.8271997x
  105. Bovee-Oudenhoven, I. M. J., D. S. M. L. Termont, P. J. Heidt and R. Van der Meer. 1997a. Increasing the intstinal resistance of rats to the invasive pathogen Salmonella enteritidis: additive effects of dietary lactulose and calcium. Gut 40:497-504. https://doi.org/10.1136/gut.40.4.497
  106. Bovee-Oudenhoven, I. M. J., D. S. M. L. Termont, A. H. Weerkamp, M. A. W. Faassen-Peters and R. Van der Meer. 1997b. Dietary calcium inhibits the intestinal colonization and translocation of Salmonella in rats. Gastroenterol. 113:550-557. https://doi.org/10.1053/gast.1997.v113.pm9247475
  107. Bach Knudsen, K. E. and I. Hansen. 1991. Gastrointestinal implications in pigs of wheat and oat fractions. 1. Digestibility and bulking properties of polysaccharides and other major constituents. Br. J. Nutr. 70:537-556. https://doi.org/10.1079/BJN19930147
  108. Bach Knudsen, K. E., B. B. Jensen and I. Hansen. 1991. Gastrointestinal implications in pigs of wheat and oat fractions. 2. Microbial activity in the gastrointestinal tract. Br. J. Nutr. 65:233-248. https://doi.org/10.1079/BJN19910083
  109. Andrieux, C. and E. Sacquet. 1986. Effects of amylomaize starch on mineral metabolism in the adult rat: role of the microflora. J. Nutr. 116:991-998. https://doi.org/10.1093/jn/116.6.991
  110. Bach Knudsen, K. E. 2001. The nutritional significance of "DF" analysis. Anim. Feed Sci. Technol. 90:3-20. https://doi.org/10.1016/S0377-8401(01)00193-6
  111. Andrieux, C. and E. Sacquet. 1983. Effect of microflora and lactose on the absorption of calcium, phosphorus and magnesium in the hindgut of the rat. Repr. Nutr. Dev. 23:259- 71. https://doi.org/10.1051/rnd:19830210
  112. Demigne, C., M.-A. Levrat and C. Remesy. 1989. Effects of feeding fermentable carbohydrates on the cecal concentrations of minerals and their fluxes between the cecum and blood plasma in the rat. J. Nutr. 119:1625-1630. https://doi.org/10.1093/jn/119.11.1625
  113. Dierick, N. A., I. J. Vervaeke, D. I. Demeyer and J. A. Decuypere. 1989. Approach to the energetic importance of DF digestion in pigs. I. Importance of fermentation in the overall energy supply. Anim. Feed Sci. Technol. 23:141-167. https://doi.org/10.1016/0377-8401(89)90095-3
  114. Doerner, K. C. and B. A. White. 1990. Assessment of the endo- 1,4-$\beta$-glucanase components of Ruminococcus flavefaciens FD-1. Appl. Environ. Microbiol. 56:1844-1850.
  115. Ohmiya, K., M. Shimizu, M. Taya and S. Shimizu. 1982. Purification and properties of cellobiosidase from Ruminococcus albus. J. Bacteriol. 150:407-409.
  116. Shim, S. B., J. M. A. J. Verdonk, W. F. Pellikaan and M. W. A. Verstegen. 2007. Differences in microbial activities of faeces from weaned and unweaned pigs in relation to in vitro fermentation of different sources of inulin-type oligofructose and pig feed ingredients. Asian-Aust. J. Anim. Sci. 20:1444-1452. https://doi.org/10.5713/ajas.2007.1444
  117. Slominski, B. A., D. Boros, L. D. Campbell, W. Guenter and O. Jones. 2004. Wheat by-products in poultry nutrition. Part I. Chemical and nutritive composition of wheat screenings, bakery by-products and wheat mill run. Can. J. Anim. Sci. 84:421-428. https://doi.org/10.4141/A03-112
  118. Varel, V. H., I. M. Robinson and H.-J. G. Jung. 1987. Influence of DF on xylanolytic and cellulolytic bacteria of adult sows. Appl. Environ. Microbiol. 53:22-26.
  119. Zijlstra, R. T., C. F. M. de Lange and J. F. Patience. 1999. Nutritional value of wheat for growing pigs: Chemical composition and digestible energy content. Can. J. Anim. Sci. 79:187-194. https://doi.org/10.4141/A98-103

Cited by

  1. Prebiotics in aquaculture: a review vol.16, pp.2, 2010, https://doi.org/10.1111/j.1365-2095.2009.00731.x
  2. Inulin as a growth promoter in diets for rabbits vol.42, pp.12, 2013, https://doi.org/10.1590/S1516-35982013001200008
  3. Performance of growing pigs fed diets based on by-products of maize and wheat processing vol.45, pp.2, 2013, https://doi.org/10.1007/s11250-012-0237-7
  4. Dietary fiber and phenolic compounds as functional ingredients: interaction and possible effect after ingestion vol.5, pp.6, 2014, https://doi.org/10.1039/C4FO00073K
  5. Interaction between dietary protein content and the source of carbohydrates along the gastrointestinal tract of weaned piglets vol.68, pp.4, 2014, https://doi.org/10.1080/1745039X.2014.932962
  6. The Effects of GH Transgenic Goats on the Microflora of the Intestine, Feces and Surrounding Soil vol.10, pp.10, 2015, https://doi.org/10.1371/journal.pone.0139822
  7. Interactive Effects of Indigestible Carbohydrates, Protein Type, and Protein Level on Biomarkers of Large Intestine Health in Rats vol.10, pp.11, 2015, https://doi.org/10.1371/journal.pone.0142176
  8. Dietary calcium concentration and cereals differentially affect mineral balance and tight junction proteins expression in jejunum of weaned pigs vol.113, pp.07, 2015, https://doi.org/10.1017/S0007114515000380
  9. The impact of phosphorus on the immune system and the intestinal microbiota with special focus on the pig vol.28, pp.01, 2015, https://doi.org/10.1017/S0954422415000049
  10. Potential of Using Maize Cobs in Pig Diets — A Review vol.28, pp.12, 2015, https://doi.org/10.5713/ajas.15.0053
  11. Oligosaccharides in Urine, Blood, and Feces of Piglets Fed Milk Replacer Containing Galacto-oligosaccharides vol.63, pp.50, 2015, https://doi.org/10.1021/acs.jafc.5b04449
  12. Nutritional strategies to cope with reduced litter weight gain and total tract digestibility in lactating sows vol.101, pp.5, 2016, https://doi.org/10.1111/jpn.12523
  13. Effects of exogenous phytase and xylanase, individually or in combination, and pelleting on nutrient digestibility, available energy content of wheat and performance of growing pigs fed wheat-based diets vol.30, pp.1, 2016, https://doi.org/10.5713/ajas.15.0876
  14. In Vitro Fermentation of Porcine Milk Oligosaccharides and Galacto-oligosaccharides Using Piglet Fecal Inoculum vol.64, pp.10, 2016, https://doi.org/10.1021/acs.jafc.5b05384
  15. Dietary fibres modulate the composition and activity of butyrate-producing bacteria in the large intestine of suckling piglets vol.110, pp.5, 2017, https://doi.org/10.1007/s10482-017-0836-4
  16. Relationship between time spent eating and nutritionally related blood metabolites of growing pigs fed on diets containing graded levels of fibre vol.57, pp.6, 2017, https://doi.org/10.1071/AN15819
  17. Fermentation of Dietetic Fiber from Green Bean and Prickly Pear Shell by Pure and Mixture Culture of Lactobacillus acidophilus LA-5 and Bifidobacterium bifidum 450B vol.74, pp.6, 2017, https://doi.org/10.1007/s00284-017-1228-8
  18. Bacterial fermentation affects net mineral flux in the large intestine of pigs fed diets with viscous and fermentable nonstarch polysaccharides12 vol.88, pp.10, 2010, https://doi.org/10.2527/jas.2010-2906
  19. Effects of rapeseed meal fiber content on phosphorus and calcium digestibility in growing pigs fed diets without or with microbial phytase vol.12, pp.01, 2018, https://doi.org/10.1017/S1751731117001343
  20. Feed Restriction Modulates the Fecal Microbiota Composition, Nutrient Retention, and Feed Efficiency in Chickens Divergent in Residual Feed Intake vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.02698
  21. Amino acid metabolism in the portal-drained viscera of young pigs: effects of dietary supplementation with chitosan and pea hull vol.39, pp.5, 2010, https://doi.org/10.1007/s00726-010-0577-4