DOI QR코드

DOI QR Code

Assessment of Population Structure and Genetic Diversity of 15 Chinese Indigenous Chicken Breeds Using Microsatellite Markers

  • Chen, Guohong (Animal Science and Technology College, Yangzhou University) ;
  • Bao, Wenbin (Animal Science and Technology College, Yangzhou University) ;
  • Shu, Jingting (Animal Science and Technology College, Yangzhou University) ;
  • Ji, Congliang (Guangdong Wen's Group) ;
  • Wang, Minqiang (Chemical Biology and Physics College, Yantai University) ;
  • Eding, Herwin (Institute for Animal Breeding, Federal Agricultural Research Centre) ;
  • Muchadeyi, Farai (Institute for Animal Breeding, Federal Agricultural Research Centre) ;
  • Weigend, Steffen (Institute for Animal Breeding, Federal Agricultural Research Centre)
  • Received : 2007.02.21
  • Accepted : 2007.10.12
  • Published : 2008.03.01

Abstract

The genetic structure and diversity of 15 Chinese indigenous chicken breeds was investigated using 29 microsatellite markers. The total number of birds examined was 542, on average 36 birds per breed. A total of 277 alleles (mean number 9.55 alleles per locus, ranging from 2 to 25) was observed. All populations showed high levels of heterozygosity with the lowest estimate of 0.440 for the Gushi chickens, and the highest one of 0.644 observed for Wannan Three-yellow chickens. The global heterozygote deficit across all populations (FIT) amounted to 0.180 (p<0.001). About 16% of the total genetic variability originated from differences between breeds, with all loci contributing significantly to this differentiation. An unrooted consensus tree was constructed using the Neighbour-Joining method and pair-wise distances based on marker estimated kinships. Two main groups were found. The heavy-body type populations grouped together in one cluster while the light-body type populations formed the second cluster. The STRUCTURE software was used to assess genetic clustering of these chicken breeds. Similar to the phylogenetic analysis, the heavy-body type and light-body type populations separated first. Clustering analysis provided an accurate representation of the current genetic relations among the breeds. Remarkably similar breed rankings were obtained with all methods.

Keywords

Chicken;Microsatellites;Genetic Differentiation;Genetic Structure

Acknowledgement

Supported by : Institute of Poultry Science, Academy of Agriculture of China

References

  1. Rosenberg, N. A., J. K. Pritchard, J. L. Weber, H. M. Cann, K. K. Kidd, L. A. Zhivotovsky and M. W. Feldman. 2002. Genetic structure of human populations. Sci. 298:2981-2985.
  2. Saitbekova, N., C. Gaillard, G. Obexer-Ruff and G. Dolf. 1999. Genetic diversity in Swiss goat breeds based on microsatellite analysis. Anim. Genet. 30:36-41. https://doi.org/10.1046/j.1365-2052.1999.00429.x
  3. Saitou, N. and M. Nei. 1987. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  4. Raymond, M. and F. Rousset. 1995. GENEPOP (version 1.2): Population genetics software for exact test and ecumenicism. J. Hered. 86:248-249. https://doi.org/10.1093/oxfordjournals.jhered.a111573
  5. Romanov, M. N. and S. Weigend. 2001. Analysis of genetic relationships between various populations of domestic and jungle fowl using microsatellite markers. Poult. Sci. 80:1057- 1063. https://doi.org/10.1093/ps/80.8.1057
  6. Rosenberg, N. A. 2004. Distruct: a program for the graphical display of population structure. Molecular Ecology Notes 4: 17-138. https://doi.org/10.1046/j.1471-8286.2003.00566.x
  7. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual. 3rd Ed. Cold Spring Harbor Laboratory, New York, USA.
  8. Slatkin, M. and N. H. Barton. 1989. A comparison of three indirect methods of estimating average levels of gene flow. Evol. 43:1349-1368. https://doi.org/10.2307/2409452
  9. Weigend, S., E. Vef, G. Wesch, E. Meckenstock, R. Seibold and F. Ellendorff. 1995. Conception for conserving genetic resources in poultry in Germany. Archiv fur Gefugelkunde. 59:327-334.
  10. Weir, B. S. and C. C. Cockerham. 1984. Estimation F-statistics for the analysis of population structure. Evol. 38:1358-1370. https://doi.org/10.2307/2408641
  11. Wimmers, K., S. Ponsuksill, T. Hardge, A. Valle-Zarate, P. K. Mathur and P. Horst. 2000. Genetic distinctness of Afican, Asian and South American local chickens. Anim. Genet. 31: 159-165. https://doi.org/10.1046/j.1365-2052.2000.00605.x
  12. Hochberg, Y. 1988. A sharper Bonferroni procedure for multiple test of significance. Biometrika. 75:800-802. https://doi.org/10.1093/biomet/75.4.800
  13. Ibeagha-Awemu, E. M. and G. Erhardt. 2005. Genetic structure and differentiation of 12 African Bos indicus and Bos Taurus cattle breeds, inferred from protein and microsatellite polymorphisms. J. Anim. Breed. Genet. 122:12-20. https://doi.org/10.1111/j.1439-0388.2004.00478.x
  14. Li, S. Z. 1983. Compendium of material medica. People's Medical Publishing House, Beijing, China.
  15. Hillel, J., A. M. M. Groenen, M. Tixier-Boichard, A. B. Korol, L. David, V. M. Kirzhner, T. Burke, A. Barre-Dirie, R. P. M. A. Crooijmans, K. Elo, M. W. Feldman, P. J. Freidlin, A. Maki- Tanila, M. Oortwijn, P. Thomson, A. Vignal, K. Wimmers and S. Weigend. 2003. Biodiversity of 52 chicken populations assessed by microsatellite typing of DNA pools. Genet. Sel. Evol. 35:533-557. https://doi.org/10.1186/1297-9686-35-6-533
  16. Du, Z. Q., L. J. Qu, X. Y. Li, X. X. Hu, Y. H. Huang, N. Li and N. Yang. 2004. Genetic diversity in Tibetan Chicken. HEDITAS (Beijing). 26:167-171.
  17. Eding, H. and T. H. E. Meuwissen. 2001. Marker-based estimate of between and within population kinships for the conservation of genetic diversity. J. Anim. Breed. Genet. 118:141-159. https://doi.org/10.1046/j.1439-0388.2001.00290.x
  18. Eding, H. and T. H. E. Meuwissen. 2003. Linear methods to estimate kinships from genetic marker data for the construction of core sets in genetic conservation schemes. J. Anim. Breed. Genet. 120:289-302. https://doi.org/10.1046/j.1439-0388.2003.00399.x
  19. FAO. 2004. Guidelines for development of national management of farm animal genetic resources plans. http://dad.fao.org/en/ refer/library/guidelin/marker.pdf
  20. Felsentein, J. 1995. PHYLIP (Phylogeny inference package) version 3.57c. Department of Genetics, University of Washington, Seattle, USA.
  21. Gao, Y. S., N. Yang, H. F. Li, K. H. Wang and H. B. Tong. 2004. Analysis of genetic diversity of preserved population of native chicken breeds by microsatellites and file foundation of markers. HEDITAS (Beijing). 26:859-864.
  22. Goudet, J. 2002. FSTAT version 2.9.3.2. Department of ecology and evolution, University of Lausanne, LAUSANNE, Switzerland.
  23. Chen, G. H., X. S. Wu, D. Q. Wang, J. Qin, S. L. Wu, Q. L. Zhou, F. Xie, R. Cheng, Q. Xu, B. Liu, X. Y. Zhang and O. Olowofeso. 2004b. Cluster analysis of 12 Chinese native chicken populations using microsatellite markers. Asian-Aust. J. Anim. Sci. 17:1047-1052. https://doi.org/10.5713/ajas.2004.1047
  24. Crooijmans, R. P. M. A., A. F. Groen, A. J. A. van Kampen, J. J. van der Poel and M. A. M. Groenen. 1996. Microsatellite polymorphism in commercial broiler and layer lines estimated using pooled blood samples. Poult. Sci. 75:904-909. https://doi.org/10.3382/ps.0750904
  25. Barker, J. S. F. 1999. Conservation of livestock breeds diversity. Anim. Genet. Res. Inf. 25:33-43. https://doi.org/10.1017/S1014233900005770
  26. Chen, G. H., K. H. Wang, J. Y. Wang, C. Ding and N. Yang. 2004a. Poultry Genetic Resources in China. 1st edn. Shanghai Scientific and Technological Press, Shanghai, China.
  27. Liu, R. S., Q. Yu, G. C. Cheng and K. F. Liu. 1996. Studies on the origin of fowl breeds. Acta Zoologica Sinica. 42 (Suppl.):165-167.
  28. Mateus, J. C., H. Eding, M. C. T. Penedo and M. T. Rangel- Figueiredo. 2004. Contributions of Portuguese cattle breeds to genetic diversity using marker-estimated kinships. Anim. Genet. 35:305-313. https://doi.org/10.1111/j.1365-2052.2004.01168.x
  29. Ministry of Agriculture of China. 2004. The state of animal genetics resource in China. China Agricultural Publishing House, Beijing, China
  30. Park, S. D. E. 2001. The Excel Microsatellite Toolkit (version 3.1). Animal Genomics Laboratory, UCD, Ireland. http://animal genomics.ucd.ie/sdepark/ms-toolkit/
  31. Pritchard, J. K., M. Stephens and P. Donnely. 2000. Inference of population structure using multilocus genotype data. Genetics. 155: 945-959.
  32. Qu, L. J., G. Q. Wu, X. Y. Li and N. Yang. 2004. Conservation efficiency of local chicken breeds in different farms as revealed by microsatellite markers. ACTA GENETICA SINICA. 31:591-595.
  33. Qu, L. J., X. Y. Li, G. F. Xu, K. W. Chen, H. J. Yang, L. C. Zhang. G. Q. Wu, Z. C. Hou, G. Y. Xu and N. Yang. 2006. Evaluation of genetic diversity in Chinese indigenous chicken breeds using microsatellite markers. Sci. China C Life Sci. 49(4):332-41. https://doi.org/10.1007/s11427-006-2001-6
  34. Surridge, A. K., D. J. Bell, K. M. Iberhim and G. T. Hewitt. 1999. Population structure and genetic variation of European wild rabbits (Oryctolagus cuniculus) in East Angle. Heredity. 82: 479-487. https://doi.org/10.1038/sj.hdy.6885110
  35. Wright, S. 1978. Evolution and the genetics of populationsvariability within and among natrual populations. 4th Ed. University of Chicago press, Chicago, IL, USA.
  36. Zhou, H. and S. J. Lamond. 1999. Genetic characterisation of biodiversity in highly inbred chicken lines by microsatellite markers. Anim. Genet. 30:256-264. https://doi.org/10.1046/j.1365-2052.1999.00505.x

Cited by

  1. Genetic structure of a wide-spectrum chicken gene pool vol.40, pp.5, 2009, https://doi.org/10.1111/j.1365-2052.2009.01902.x
  2. Analysis of genetic structure and relationship among nine indigenous Chinese chicken populations by the Structure program vol.88, pp.2, 2009, https://doi.org/10.1007/s12041-009-0028-8
  3. Genetic diversity in farm animals - a review vol.41, pp.13652052, 2010, https://doi.org/10.1111/j.1365-2052.2010.02038.x
  4. Analysis of Genetic Characteristics and Probability of Individual Discrimination in Korean Indigenous Chicken Brands by Microsatellite Marker vol.55, pp.3, 2013, https://doi.org/10.5187/JAST.2013.55.3.185
  5. Genetic Diversity and Relationships of Korean Chicken Breeds Based on 30 Microsatellite Markers vol.27, pp.10, 2014, https://doi.org/10.5713/ajas.2014.14016
  6. Global diversity and genetic contributions of chicken populations from African, Asian and European regions vol.45, pp.6, 2014, https://doi.org/10.1111/age.12230
  7. Assessment of genetic diversity and conservation priority of Omani local chickens using microsatellite markers vol.46, pp.5, 2014, https://doi.org/10.1007/s11250-014-0558-9
  8. A genome-wide association study identifies novel single nucleotide polymorphisms associated with dermal shank pigmentation in chickens vol.93, pp.12, 2014, https://doi.org/10.3382/ps.2014-04164
  9. Genetic Diversity of Five Local Swedish Chicken Breeds Detected by Microsatellite Markers vol.10, pp.4, 2015, https://doi.org/10.1371/journal.pone.0120580
  10. The genetic diversity of chicken breeds from Jiangxi, assessed with BCDO2 and the complete mitochondrial DNA D-loop region vol.12, pp.3, 2017, https://doi.org/10.1371/journal.pone.0173192
  11. Assessment of the population structure and genetic diversity of Denizli chicken subpopulations using SSR markers pp.1828-051X, 2017, https://doi.org/10.1080/1828051X.2017.1384336
  12. Genetic diversity of Saudi native chicken breeds segregating for naked neck and frizzle genes using microsatellite markers vol.31, pp.12, 2018, https://doi.org/10.5713/ajas.18.0041
  13. Genetic diversity and population structure analysis of eight local chicken breeds of Southern Xinjiang pp.1466-1799, 2018, https://doi.org/10.1080/00071668.2018.1523537
  14. Genomic diversity dynamics in conserved chicken populations are revealed by genome-wide SNPs vol.19, pp.1, 2018, https://doi.org/10.1186/s12864-018-4973-6