DOI QR코드

DOI QR Code

Effect of Chito-oligosaccharide Supplementation on Immunity in Broiler Chickens

Deng, Xingzhao;Li, Xiaojing;Liu, Pai;Yuan, Shulin;Zang, Jianjun;Li, Songyu;Piao, Xiangshu

  • 투고 : 2008.01.22
  • 심사 : 2008.05.28
  • 발행 : 2008.11.01

초록

This study was conducted to determine the effects of dietary supplementation of either 100 mg/kg chito-oligosaccharide (COS) or chlortetracycline (CTC) with corn-soybean-fish meal on immunity in broiler chickens. A total of 147 one-day old male broiler chicks were randomly allocated to 3 treatments with 7 replicate pens per treatment and 7 birds per pen. The experimental diets consisted of a control diet based on corn, soybean and fish meal without COS and any antibiotic supplement and similar diets supplemented with either CTC (80 mg/kg from d 1 to 21 and 50 mg/kg from d 22 to 42) or COS (100 mg/kg from d 1 to 42). During the entire experimental period, all birds had ad libitum access to diets and water. The main immune organ indices, T-lymphocyte proliferation, serum cytokine concentrations, serum NO level and serum iNOS activity were measured on d 21 and d 42. On d 21, broilers fed 100 mg/kg COS had improved (p<0.01) indices of spleen, thymus, and bursa of Fabricius compared with the control and CTC birds. Birds receiving 100 mg/kg COS had higher (p<0.05) serum concentrations of $IL-1{\beta}$, IL-6, IgM, NO and iNOS than birds on the control treatment. Serum $Ca^{2+}$ level of birds fed 100 mg/kg COS tended to be higher (p = 0.049) than in birds fed CTC. On d 42, the birds fed 100 mg/kg COS had higher (p<0.05) concentrations of TNF-${\alpha}$ and IgM in serum than birds in both the CTC and control treatments. Birds fed 100 mg/kg COS had a higher concentration of IFN-$\gamma$ than the control group. In conclusion, dietary supplementation of COS appeared to improve the immunity of broilers by promoting the weight of the main immune organs, increasing IgM secretion, stimulating microphages to release $TNF-{\alpha}$, $IL-1{\beta}$, IL-6 and IFN-$\gamma$, and activating iNOS to induce NO.

키워드

Chitooligosaccharide (CTC);Immune Organ Indices;Cytokines;NO;Broiler

참고문헌

  1. Higuchi, M., N. Higashi, H. Taki and T. Osawa. 1990. Cytolytic mechanisms of activated macrophages. Tumor necrosis factor and L-arginine-dependent mechanisms act synergistically as the major cytolytic mechanisms of activated macrophages. J. Immunol. 144:1425-1431.
  2. Huff, G. R., W. E. Huff, N. C. Rath and G. Tellez. 2006. Limited treatment with ${\beta}$-1,3/1,6-Glucan improved production values of broiler chickens challenged with Escherichia coli. Poult. Sci. 85:613-618. https://doi.org/10.1093/ps/85.4.613
  3. Jeon, Y. J. and S. K. Kim. 2002. Antitumor activity of chitosan oligosaccharides produced in ultrafiltration membrane reactor system. J. Microbio. Biotech. 12:503-507.
  4. Jeon, Y. J., F. Shahidi and S. K. Kim. 2000. Preparation of chitin and chitosan oligomers and their applications in physiological functional foods. Food Rev. Int. 16:159-176. https://doi.org/10.1081/FRI-100100286
  5. Jeon, Y. J., P. J. Park and S. K. Kim. 2001. Antimicrobial effect of chitoligosaccharides produced by bioreactor. Carbohydr. Polym. 44:71-76. https://doi.org/10.1016/S0144-8617(00)00200-9
  6. Fraifeld, V., R. Blaicher-Kulick, A. A. Degen and J. Kaplanski. 1995. Is hypothalamic prostaglandin $E_{2}$ involved in avian fever? Life Sci. 56:1343-1346. https://doi.org/10.1016/0024-3205(95)00086-0
  7. Gotoh, T., K. Matsushima and K. Kikuchi. 2004. Preparation of alginate-chitosan hybrid gel beads and adsorption of divalent metal ions. Chemosphere 55:135-140. https://doi.org/10.1016/j.chemosphere.2003.11.016
  8. Green, L. C., D. A. Wagner, J. Glogowski, P. L. Skipper, J. S. Wishnok and S. R. Tannenbaum. 1982. Analysis of nitrate, nitrite and [15N] nitrate in biological fluids. Anal. Biochem. 126:131-138. https://doi.org/10.1016/0003-2697(82)90118-X
  9. Han, Y., L. Zhao, Z. Yu, J. Feng and Q. Yu. 2005. Role of mannose receptor in oligochitosan-mediated stimulation of macrophage function. Int. Immunopharmacol. 5:1533-1542. https://doi.org/10.1016/j.intimp.2005.04.015
  10. Chen, H., W. G. Hong and X. M. Zang. 2006. Effect of oligochitosan on production performance and immune function of quail. J. Economic Animal. 10:18-21 (In Chinese with English Abstract).
  11. Ding, A. H., C. F. Nathan and D. J. Stuehr. 1988. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages: comparison of activating cytokines and evidence for independent production. J. Immun. 141:2407-2412.
  12. Dou, J. L., C. Y. Tan, Y. G. Du, X. F. Bai, K. Y. Wang, and X. J. Ma. 2007. Effects of chitooligosaccharides on rabbit neutrophils in vitro. Carbohyhr. Polym. 69:209-213. https://doi.org/10.1016/j.carbpol.2006.09.029
  13. Chae, S. Y., M. Jang and J. Nah. 2005. Influence of molecular weight on oral absorption of water soluble chitosans. J. Control. Release 102:383-394. https://doi.org/10.1016/j.jconrel.2004.10.012
  14. Mao, X. F., X. S. Piao, C. H. Lai, D. F. Li, J. J. Xing and B. L. Shi. 2005. Effects of ${\beta}$-glucan obtained from the Chinese herb Astragalus membranaceus and lipopolysaccharide challenge on performance, immunological adrenal, and somatotropic responses of weanling pigs J. Anim. Sci. 83:2775-2782. https://doi.org/10.2527/2005.83122775x
  15. Mast, J. and B. M. Goddeeris. 1999. Development of immunocompetence of broiler chickens. Vet. Immunol. Immunop. 70:245-256. https://doi.org/10.1016/S0165-2427(99)00079-3
  16. Mori, T., Y. Irie, S. I. Nishimura, S. Tokura, M. Matsuura, M. Okumura, T. Kadosawa and T. Fujinaga. 1998. Endothelial cell responses to chitin and its derivatives. J. Biomed. Mater. Res. 43:469-472. https://doi.org/10.1002/(SICI)1097-4636(199824)43:4<469::AID-JBM15>3.0.CO;2-9
  17. Naseem, K. M. 2005. The role of nitric oxide in cardiovascular diseases. Mol. Aspects Med. 26:33-65. https://doi.org/10.1016/j.mam.2004.09.003
  18. Nathan, C. 1992. Nitric oxide as a secretory product of mammalian cells. FASEB J. 6:3051-3064. https://doi.org/10.1096/fasebj.6.12.1381691
  19. NRC. 1994. Nutrient requirements of poultry. 9th rev. ed. National Academy Press, Washington, DC.
  20. Lambrecht, B., M. Gonze, D. Morales, G. Meulemans and T. P. van den Berg. 1999. Comparison of biological activities of natural and recombinant chicken interferon-gamma. Vet. Immunol. Immunopathol. 70:257-267. https://doi.org/10.1016/S0165-2427(99)00080-X
  21. Lancaster, J. R. Jr. 1992. Nitric oxide in cells. Anim. Sci. 80:248-259.
  22. Maeda, Y. and Y. Kimura. 2004. Antitumor effects of various low-molecular-weight chitosans are due to increased natural killer activity of intestinal intraepithelial lymphocytes in sarcoma 180-bearing mice. J. Nutr. 134:945-950. https://doi.org/10.1093/jn/134.4.945
  23. John, P., M. D. Cooke, J. Victor and M. D. Dzau. 1997. Nitrite oxide synthase: role in the genesis of vascular disease. Ann. Rev. Med. 48:489-509. https://doi.org/10.1146/annurev.med.48.1.489
  24. Jung, W. K., S. H. Moon and S. K. Kim. 2006. Effect of chitooligosaccharides on calcium bioavailability and bone strength in ovariectomized rats. Life Sci. 78:970-976. https://doi.org/10.1016/j.lfs.2005.06.006
  25. Karupiah, G., Q. W. Xie, R. M. L. Buller, C. Nathan, C. Duarte and J. D. MacMicking. 1993. Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase. Sci. 261:1445-1448. https://doi.org/10.1126/science.7690156
  26. Kobayashi, M., T. Watanabe, S. Suzuki and M. Suzuki. 1990. Effect of N-acetylchitohexaose against Candida albicans infection of tumor-bearing mice. Microbiol. Immunol. 34:413-426. https://doi.org/10.1111/j.1348-0421.1990.tb01024.x
  27. Kolios, G., V. Valatas and S. G. Ward. 2004. Nitric oxide in inflammatory bowel disease: a universal messenger in an unsolved puzzle. Immunology 113:427-437. https://doi.org/10.1111/j.1365-2567.2004.01984.x
  28. Xie, Q. W., H. J. Cho, J. Calaycay, R. A. Mumford, K. M. Swiderek, T. D. Lee, A. Ding, T. Troso and C. Nathan. 1992. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Sci. 256:225-228 https://doi.org/10.1126/science.1373522
  29. Yu, Z., L. Zhao and H. Ke. 2004. Potential role of nuclear factor-kappaB in the induction of nitric oxide and tumor necrosis factor-alpha by oligochitosan in macrophages. Int. Immunopharmacol. 4:193-200. https://doi.org/10.1016/j.intimp.2003.12.001
  30. Yuan, S. L., X. S. Piao, D. F. Li, S. W. Kim, H. S. Lee and P. F. Guo. 2006. Effects of dietary Astragalus polysaccharide on growth performance and immune function in weaned pigs Anim. Sci. 82:1-7.
  31. Zafar, T. A., C. M. Weaver, Y. Zhao, B. R. Martin and M. E. Wastney. 2004. Nondigestible oligosaccharides increase calcium absorption and suppress bone resorption in ovariectomized rats. J. Nutr. 134:399-402. https://doi.org/10.1093/jn/134.2.399
  32. Zhang, M., T. Tan, H. Yuan and C. Rui. 2003. Insecticidal and fungicidal activities of chitosan and oligo-chitosan. J. Bioact. Compat. Polym. 18:391-400. https://doi.org/10.1177/0883911503039019
  33. Wu, G. J. and G. J. Tsai. 2004. Cellulase degradation of shrimp chitosan for the preparation of a water-soluble hydrolysate with immunoactivity. Fish. Sci. 70:1113-1120. https://doi.org/10.1111/j.1444-2906.2004.00912.x
  34. Wu, G. J. and G. J. Tsai. 2007. Chitooligosaccharides in combination with interferon-${\gamma}$ increase nitric oxide production via nuclear factor-${\kappa}B$ activation in murine RAW264.7 macrophages. Food Chem. Toxico. 45:250-258. https://doi.org/10.1016/j.fct.2006.07.025
  35. Wu, G. J., H. T. Lin and G. J. Tsai. 2002. Production of chitooligosaccharides from shrimp chitosan with immuneenhancing activity. Adv. Chitin Sci. 5:77-80.
  36. Seo, W. G., H. O. Pae, N. Y. Kim, G. S. Oh, I. S. Park, Y. H. Kim, Y. M. Kim, Y. H. Lee, C. D. Jun and H. T. Chung. 2000. Synergistic cooperation between water soluble chitosan oligomers and interferon-${\gamma}$ for induction of nitric oxide synthesis and tumoricidal activity in marine peritoneal macriphages. Cancer Lett. 159:189-195. https://doi.org/10.1016/S0304-3835(00)00551-6
  37. Shapiro, F., I. Nir and D. Heller. 1998. Stunting syndrome in broilers: effect of stunting syndrome inoculum obtained from stunting syndrome affected broilers, on broilers, leghorns and turkey poults. Poult. Sci. 77:230-236. https://doi.org/10.1093/ps/77.2.230
  38. Tokoro, A., M. Kobayashi, N. Tatewaki, K. Suzuki, Y. Okawa, T. Mikami, S. Suzuki and M. Suzuki. 1989. Protective effect of N-acetylchitohexaose on Listeria monocytogens infection in mice. Microbiol. Immunol. 3:357-367.
  39. Wang, X. W., Y. G. Du, X. F. Bai and H. G. Li. 2003. The effect of oligochitosan on broiler gut flora, microvilli density, immune function and growth performance. Acta Zoonutrimenta Sinica. 15:32-35.
  40. Qureshi, M. A., C. L. Heggen and I. Hussain. 2000. Avian macrophage: effector functions in health and disease. Dev. Comp. Immunol. 24:103-119. https://doi.org/10.1016/S0145-305X(99)00067-1
  41. Roura, E., J. Homedes and K. C. Klasing. 1992. Prevention of immunologic stress contributes to the growth-promoting ability of dietary antibiotics in chicks. J. Nutr. 122:2283-2290. https://doi.org/10.1093/jn/122.11.2283
  42. Royal, W. A., R. A. Robinson and K. I. Loken. 1970. The influence of chlortetracycline feeding in Salmonellosis in young calves. Vet. Rec. 86:67-69. https://doi.org/10.1136/vr.86.3.67
  43. Samarasinghe, K., C. Wenk, K. F. S. T. Silva and J. M. D. M. Gunasekera. 2003. Turmeric (Curcuma longa) root powder and mannanoligosaccharides as alternatives to antibiotics in broiler chicken diets. Asian-Aust. J. Anim. Sci. 16(10):1495-1500. https://doi.org/10.5713/ajas.2003.1495
  44. SAS Institute. 1996. SAS User's Guide: Statistics. Version 7.0. SAS Institute, Cary, NC
  45. Choi, H. J., J. Ahn, N. C. Kim and H. S. Kwak. 2006. The effects of microencapsulated chitooligosaccharide on physical and sensory properties of the milk. Asian-Aust. J. Anim. Sci. 19:1347-1353. https://doi.org/10.5713/ajas.2006.1347
  46. Han, K. N., I. K. Kwon, J. D. Lohakare, S. Heo and B. J. Chae. 2007. Chito-oligosaccharides as an alternative to antimicrobials in improving performance, digestibility and microbial ecology of the gut in weanling pigs. Asian-Aust. J. Anim. Sci. 20:556-562. https://doi.org/10.5713/ajas.2007.556
  47. Kim, H. M., S. H. Hong, S. J. Yoo, K. S. Baek, Y. J. Jeon and S. Y. Choung. 2006. Differential effects of chitooligosaccharides on serum cytokine levels in aged subjects. J. Med. Food 9:427-430. https://doi.org/10.1089/jmf.2006.9.427
  48. Li, X. J., X. S. Piao, S. W. Kim, P. Liu, L. Wang, Y. B. Shen, S. C. Jung and H. S. Lee. 2007. Effects of chito-oligosaccharide supplementation on performance, nutrient digestibility, and serum composition in broiler chickens. Poul. Sci. 86:1107-1114. https://doi.org/10.1093/ps/86.6.1107
  49. Moncada, S., R. M. Palmer and E. A. Higgs. 1991. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43:109-142.

피인용 문헌

  1. Chitosan-Zn Chelate Increases Antioxidant Enzyme Activity and Improves Immune Function in Weaned Piglets vol.158, pp.1, 2014, https://doi.org/10.1007/s12011-014-9910-1
  2. Chitosan and its oligosaccharide derivatives (chito-oligosaccharides) as feed supplements in poultry and swine nutrition vol.99, pp.1, 2014, https://doi.org/10.1111/jpn.12222
  3. In vitro antitumor activity of heterochitooligosaccharides (Review) vol.51, pp.1, 2015, https://doi.org/10.1134/S0003683815010068

과제정보

연구 과제 주관 기관 : National Nature Science Foundation of China