DOI QR코드

DOI QR Code

The Modulating Effect of β-1, 3/1, 6-glucan Supplementation in the Diet on Performance and Immunological Responses of Broiler Chickens

  • Zhang, Bo (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology China Agricultural University) ;
  • Guo, Yuming (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology China Agricultural University) ;
  • Wang, Zhong (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology China Agricultural University)
  • Received : 2007.04.11
  • Accepted : 2007.07.23
  • Published : 2008.02.01

Abstract

The object of this trial was to investigate the effect of dietary ${\beta}$-1,3/1,6-glucan supplementation on the performance and immunological response of broiler chickens. Two hundred and forty 1-day old male broilers ($39{\pm}1g$) were separated into six treatments which were given six different feeds containing 0 (control), 25, 50, 75, 100 and 125 mg/kg dietary ${\beta}$-1,3/1,6-glucan supplementation. On days 21 and 42, body weight gain, feed consumption and feed conversation rate were recorded as measures of growth performance. The levels of key cytokines in the immuno-regulating pathway: interleukin-1 (IL-1), interleukin-2 (IL-2), interferon $\gamma$(IFN-$\gamma$, tumor necrosis factor $\alpha$(TNF-$\alpha$, and the concentrations of signal molecules: peripheral blood plasma globulin, serum Immunoglobulin G (IgG) and intestinal secretary Immunoglobulin A (sIgA), were measured as indices of the immune response to determine suitable levels of dietary ${\beta}$-1,3/1,6-glucan supplementation. The results indicated that performance was elevated quadratically with dietary ${\beta}$-1,3/1,6-glucan supplementation. Maximal growth performance and an enhanced immunological response were obtained at a supplemented level of 50 mg/kg.

Keywords

${\beta}$-1,3/1,6-glucan;Cytokines;Immunoglobulin;Immunomodulating;Broilers

Acknowledgement

Supported by : Agricultural Transformation Fund

References

  1. Young, S. H., J. Ye, D. G. Frazer, X. Shi and V. Castranova. 2001. Molecular mechanism of tumor necrosis factor-alpha production in 1-3-$\beta$-glucan (zymosan)-activated macrophages. J. Biol. Chem. 276:20781-20787. https://doi.org/10.1074/jbc.M101111200
  2. Yun, C. H., A. Estrada, A. VanKessel, B-C. Park and B. Laarveld. 2003. Beta-glucan, extracted from oat, enhances disease resistance against bacterial and parasitic infections. FEMS Immunol. Medic. Microbiol. 35:67-75. https://doi.org/10.1016/S0928-8244(02)00460-1
  3. Gordon, D., J. Brown and S. Gordon. 2001. A new receptor for $\beta$-glucans. Macmillan Magazines 36-37.
  4. Guo, Y. M, R. A. Ali and M. A. Qureshi. 2003. The influence of $\beta$-glucan on immune responses in broiler chicks. Immunopharmacol. Immunotoxicol. 25(3):461-472. https://doi.org/10.1081/IPH-120024513
  5. Hoqaboam, C. M., M. L. Steinhauser and H. Schock. 1998. Therapeutic effects of nitric oxide inhibition during experimental fecal peritonitis: Role of interleukin-10 and monocyte chemo attractant protein1. Infection and Immunity 66:650-655.
  6. Huff, G. R., W. E. Huff, N. C. Rath and G. Tellez. 2006. Limited treatment with $\beta$-1,3/1,6-Glucan improves production values of broiler chickens challenged with escherichia coli. Poult. Sci. 85(4):613-618. https://doi.org/10.1093/ps/85.4.613
  7. Dritz, S. S., J. Shi, T. L. Kielian, J. L. Nelssen, M. D. Tokach, M. M. Chengappa, J. E. Smith and F. Blecha. 1995. Influence of dietary $\beta$-glucan on growth performance, nonspecific immunity, and resistance to Streptococcus suis infection in weanling pigs. J. Anim. Sci. 73:3341-3350. https://doi.org/10.2527/1995.73113341x
  8. Mao, X. F., X. S. Piao, C. H. Lai, D. F. Li, J. J. Xing and B. L. Shi. 2005. Effects of $\beta$-glucan obtained from the Chinese herb Astragalus membranaceus and lipopolysaccharide challenge on performance, immunological, adrenal, and somatotropic responses of weaning pigs. J. Anim. Sci. 83:2775-2782. https://doi.org/10.2527/2005.83122775x
  9. National Research Council. 1994. Nutrient requirements of poultry H. 9th Ed. National Academy press, Washington DC.
  10. Lowry, V. K., M. B. Farnell, P. J. Ferro, C. L. Swaggerty, A. Bahl, M. H. Kogut. 2005. Purified $\beta$-glucan as an abiotic feed additive up-regulates the innate immune response in immature chickens against Salmonella enterica serovar Enteritidis. Interl J. Food Microbiol. 98:309-318. https://doi.org/10.1016/j.ijfoodmicro.2004.06.008
  11. Mansell, P. W. A., G. Rowden and C. Hammer. 1978. Clinical experiences with the use of glucan. In Immune Modulation and Control of Neoplasia by Adjuvant Therapy. Raven Press, New York, NY.
  12. Kulicke, W-M., A. I. Lettau and H. Thielking. 1997. Correlation between immunological activity, molarmass, and molecular structure of different (1,3)-$\beta$-D-glucans. Carbohydrate Res. 297:135-143. https://doi.org/10.1016/S0008-6215(96)00273-X
  13. Li, Z. Q., Y. M. Guo and J. M. Yuan. 2004. Effects of $\beta$-glucan on performance and immune response of broiler chicks. China Poult. 26(9):39-42.
  14. Liu, Y., Y. M. Guo and J. M. Yuan. 2003. Effects of $\beta$-1,3/1,6- glucan on performance and immune response of broilers. J. China Agric. Univ. 8(1):91-94.
  15. Wang, Z., Y. M. Guo and G. Q. Niu. 2006. Effect of $\beta$-1,3/1,6-glucan from Saccharomyces cerevisiae on growth performance and immune function of suckling piglets. China J. Anim. Sci. 42(21):19-22.
  16. Williams, D. L. and N. R. Di Luzio. 1979. Glucan induced modification of experimental Staphylococcus aureus infection in normal, leukemic and immunosuppressed mice. Adv. Experi. Medicine Biol. 121(A):291-306.
  17. Williams, S. B., J. R. Rose, L. Rott, M. A. Franco, H. B. Greenberg, E. C. Butcher. 1998. The memory B cell sunset responsible for the secretory IgA response and protective humoral immunity to rotavirus express the intestinal homing receptor, ${\alpha}4{\beta}7$. J. Immunol. 161(8):4227-4235.
  18. Tzianabos, A. O. 2000. Polysaccharide immunomodulators as therapeutic agents: Structural aspects and biologic function. Clinic. Microbiol. Reviews 13:523-533. https://doi.org/10.1128/CMR.13.4.523-533.2000
  19. Vetvicka, V. and J-C. Yvin. 2004. Effects of marine $\beta$-glucan on immune reactions. Interl Immunopharmacol. 4:721-730. https://doi.org/10.1016/j.intimp.2004.02.007
  20. SPSS Inc. 2001. SPSS user's guide: statistics, Version 11.0.0 Ed (SPSS for Windows, Release 11.0.0).
  21. Suphantharika, M., P. Khunrae and P. Thanardkit. 2003. Preparation of spent brewer's yeast $\beta$-glucan with a potential application as an immunostimulant for black tiger shrimp, Penaeusmomodon. Bioresource Technology 88:55-60. https://doi.org/10.1016/S0960-8524(02)00257-2
  22. Thanardkit, P., P. Khunrae and M. Suphantharika. 2002. Glucan from spent brewer's yeast: preparation, analysis and use as a potential immunostimulant in shrimp feed. World J. Microbiol. Biotechnol. 18:527-539. https://doi.org/10.1023/A:1016322227535
  23. Rinsten, L., T. Stenberg and R. Andersson. 2003. Determination of $\beta$-glucan molecular weight using SEC with calcofluor detection in cereal extracts. Cereal Chemistry, 80(4):485-490. https://doi.org/10.1094/CCHEM.2003.80.4.485
  24. Sakurai, T., K. Hashimoto, I. Suzuki, N. Ohno, S. Oikawa, A. Masuda and T. Yadomae. 1992. Enhancement of murine alveolar macrophage functions by orally administered $\beta$-glucan. Interl J. Immunopharmacol. 14:821-830. https://doi.org/10.1016/0192-0561(92)90080-5
  25. Schoenherr, W. D., D. S. Pollmann and J. A. Coalson. 1994. Titration of macroGards on growth performance of nursery pigs. J. Anim. Sci. 72(Suppl.2):57(Abstr.).
  26. Sohn, K. S., M. K. Kim, J. D. Kim and In. K. Han. 2000. The role of immunostimulants in monogastric animal and fish -review. Asian-Aust. J. Anim. Sci. 13(8):1178-1187. https://doi.org/10.5713/ajas.2000.1178
  27. Ramaswamy, K., D. N. Correa and R. Bell. 1996. Local intestinal immune responses to infections with trichinella spiralis. J. Immunol. 156(11):4328-4337.
  28. Reynolds, J. A., M. D. Kastello, D. G. Harrington, C. L. Crabbs, C. J. Peters, J. V. Jemski, G. H. Scott and N. R. Di Luzio. 1980. Glucan-induced enhancement of host resistance to selected infectious diseases. Infection and Immunity 30:51-57.
  29. Pins, J. J., J. M. Keenan, L. L. Curry, M. J. Goulson and L. W. Kolberg. 2005a. Extracted barley beta-glucan improves metabolic control and blood lipid in metabolic syndrome population. Presented at first international congress on prediabetic and metabolic syndrome, Berlin, Germany, April 13-16.
  30. Pins, J. J., J. M. Keenan, M. J. Goulson, L. W. Kolberg and N. E. Knutson. 2005b. Extracted barley betaglucan improves metabolic control and blood lipids in metabolic syndrome population. Poster presented at American College of Nutrition Annual Meeting, Charleston, SC, Sept. 22-25.
  31. Cleary, J. A., G. E. Kelly and A. J. Husband. 1999. The effect of molecular weight and beta-1,6-linkages on priming of macrophage function in mice by (1,3)-beta-D-glucan. Immunol. Cell Biol. 77:395-403. https://doi.org/10.1046/j.1440-1711.1999.00848.x
  32. Danielle, A. M., Kerckhoffs and F. Brouns. 2002. Effects on the human serum lipoprotein profile of $\beta$-glucan, soy protein and are flavones, plant sterols and stanols, garlic and tocotrienols. J. Nutr. 132(9):2494-2505. https://doi.org/10.1093/jn/132.9.2494
  33. Cheng, Y. H., D. N. Lee, C. M. Wen and C. F. Weng. 2004. Effects of $\beta$-glucan supplementation on lymphocyte proliferation, macrophage chemotaxis and specific immune responses in broilers. Asian-Aust. J. Anim. Sci. 17(8):1145-1149. https://doi.org/10.5713/ajas.2004.1145
  34. Castro, M., N. V. Ralston and T. I. Morqenthaler. 1994. Candida albicans stimulates arachidonic acid liberation from alveolar macrophages through alpha-mannan and beta-glucan cell wall components. Infection and Immunity 62:3138-3145.
  35. Bahl, A. K. and N. Sorgente. 2002. $Immustim^{\circledR}$, a nutricine biomodulator: Controlling necrotic enteritis without growth promotion antibiotics: A field evaluation. Poult. Sci. 80(Suppl1):116(Abstr.).
  36. Bohn, J. A. and J. N. BeMiller. 1995. (1-3)-$\beta$-D-Glucans as biological response modifiers: A review of structure-functional activity relationships. Carbohydrate Polymers 28:3-14. https://doi.org/10.1016/0144-8617(95)00076-3
  37. Ai, G. P., Y. P. Su and T. M. Cheng. Structure and function of intestinal mucosal immunity. China Immunol. J. 16(4):82-84.
  38. Huff, G. R., W. E. Huff, J. M. Balog, P. Holt and N. C. Rath. 2002. Effect of dietary treatment with $\beta$-1,3/1,6-glucan (Immustim) on disease resistance of turkeys challenged with Escherichia coli. Poult. Sci. 80(Suppl. 1):18(Abstr.).
  39. Kramer, D. R., R. M. Sutherland and S. Bao. 1995. Cytokine mediated effects in mucosal immunity. J. Immunol Cell Biol. 73:389-396. https://doi.org/10.1038/icb.1995.61
  40. Poutsiaka, D. D., M. Menggozzi and E. Vannier. 1993. Cross-linking of the beta-glucan receptor on human monocytes results in interleukin-1 receptor antagonist but not interleukin-1 production. Blood, 82:3695-3700.
  41. Tokunaka, K., N. Ohno and Y. Adachi. 2000. Immunopharmacological and immunotoxicological activities of a water-soluble (1$\rightarrow$3)- $\beta$-D-glucan, CSBG from Candida spp. Interl J. Immunopharmacol. 22:383-394. https://doi.org/10.1016/S0192-0561(99)00093-4

Cited by

  1. extract to diets of layer chicks vol.52, pp.5, 2011, https://doi.org/10.1080/00071668.2011.619517
  2. Effects of yeast cell walls on performance and immune responses of cyclosporine A-treated, immunosuppressed broiler chickens vol.107, pp.06, 2012, https://doi.org/10.1017/S000711451100362X
  3. Respostas fisiológicas e de desempenho de leitões suplementados com B-glucanos e desafiados imunologicamente vol.64, pp.2, 2012, https://doi.org/10.1590/S0102-09352012000200025
  4. Immunomodulatory efficacy of yeast cell products in poultry: a current review vol.70, pp.01, 2014, https://doi.org/10.1017/S0043933914000051
  5. Gut Health of Pigs: Challenge Models and Response Criteria with a Critical Analysis of the Effectiveness of Selected Feed Additives — A Review vol.29, pp.7, 2015, https://doi.org/10.5713/ajas.15.0795
  6. Synchrotron-Based and Globar-Sourced Molecular (Micro)spectroscopy Contributions to Advances in New Hulless Barley (with Structure Alteration) Research on Molecular Structure, Molecular Nutrition and Nutrient Delivery pp.1549-7852, 2015, https://doi.org/10.1080/10408398.2013.876386
  7. Effects of Bacillus subtilis, Kefir and β-Glucan Supplementation on Growth Performance, Blood Characteristics, Meat Quality and Intestine Microbiota in Broilers vol.43, pp.3, 2016, https://doi.org/10.5536/KJPS.2016.43.3.159
  8. vol.45, pp.3, 2016, https://doi.org/10.1080/03079457.2016.1155693
  9. Effects of dietary symbiotic supplementation on growth performance and duodenum histology of Japanese quail (Coturnix coturnix Japonica) reared in different flooring systems vol.46, pp.10, 2017, https://doi.org/10.1590/s1806-92902017001000002
  10. A review of β-glucans as a growth promoter and antibiotic alternative against enteric pathogens in poultry vol.73, pp.03, 2017, https://doi.org/10.1017/S0043933917000241
  11. – 1,3/1,6 – glucan on vaccination responses and immunological parameters in dogs pp.1465-3443, 2017, https://doi.org/10.1080/09540105.2017.1324407
  12. Effect of maternal fish oil and seaweed extract supplementation on colostrum and milk composition, humoral immune response, and performance of suckled piglets1 vol.88, pp.9, 2010, https://doi.org/10.2527/jas.2009-2764
  13. Effect of maternal seaweed extract supplementation on suckling piglet growth, humoral immunity, selected microflora, and immune response after an ex vivo lipopolysaccharide challenge1 vol.90, pp.2, 2012, https://doi.org/10.2527/jas.2010-3243
  14. Effect of Varying Proportions of Lignin and Cellulose Supplements on Immune Function and Lymphoid Organs of Layer Poultry (Gallus gallus) vol.56, pp.1, 2019, https://doi.org/10.2141/jpsa.0180032