Performance Evaluation of Welded Joints for Single-Layer Latticed Domes through Joint Rigidity Test

Lee, Young Hak Seo, Sang Hoon Kim, Min Sook Kim, Heechoul Lee, Sung Min

ABSTRACT: Joints of single-layer latticed domes show various flexural behaviors according to their shapes and connecting methods. Ball joints are relatively easy to apply and build while their rigidities are relatively small and have disadvantage in long span. Welded joints have many advantages in rigidity, internal force and long span. However few experimental studies have been performed. In this paper, improved welded joint for the single layer latticed domes was proposed through both analytical and experimental analyses. Length of inserted plates, thickness of inserted plates and hole of sub steel pipes were selected as parameters for experimental comparisons and defining the effects of the selected variables.

KEYWORD: Single-layer latticed domes, Welded joints, Bending Test, Initial rigidity

1. 서론

1.1 연구의 배경 및 목적

대공간 구조물의 구조시스템 중 단층 레티스 동은 면재에 부재를 일정한 패턴으로 배치함으로써 형상을 구성하는 구조로 복층 레티스 동에 비해 설계 및 사공이 용이하고 적은 수의 부재를 사용하여 부재력을 강화적으로 이용할 수 있으며, 미적으로도 훌륭한 구조 시스템이다. 반면, 복층 레티스 동에 비해 강성이 작기 때문에 경공간은 복잡하게 구조적으로 불안정한 구조로 보인다는 단점이 있다. 1997년 나고야에 건립된 187m 경건의 나고야동은 용접접합부를 적용한 단층 레티스 구조의 대표적인 사례로, 동의 구조적 간격에 영향을 주는 요인 중 하나인 접합부 강성을 확보함으로써 단층 레티스 구조에서도 충분히 경공간을 갖는 돈을 건립할 수 있다는 가능성을 보여준다. 그러나 단층 레티스 동에 주로 적용되는 볼 조인트 접합부의 경우, 부재 및 접합부의 상세에 있어서 많은 연구와 실험(박철호 등, 2003; 한상숙 등, 2001; Aitzibor 등, 2007)을 통해 자료의 축적이 상당부분 이루어진 반면 단층 레티스 동에 적용가능한 용접접합부에 관한 연구는 거의 전무한 실정이다. 따라서 본 연구에서는 단층 레티스 동에 적용가능한 구조적 성능이 개선된 새로운 형태의 용접 접합부를

본 논문에 대한 보고서는 2009년 4월 30일까지 학교로 보내주셔야 도의 최감을 기해합니다.
제안하고자 하였다.

1.2 연구의 범위 및 방법

단층 레이스 등에 적용되는 기존의 용접접합부 중 가장 널리 알려진 나고야등에 적용된 접합부는 주강관 내부에 내다이어프럼을 적용한 비교적 단순한 형태를 가지고 있다. 본 연구에서는 접합부의 내력에 영향을 주는 요소인 내다이어프럼, 외다이어프럼, 가넷 플레이트와 삽입 플레이트를 작용하여 기존에 사용되는 용접 접합부에 비해 내력이 향상된 접합부의 형태를 제안하고, 그 성능을 검증하기 위하여 각각의 접합부에 대해 실험을 수행하였다. 또한, 제안된 접합부에 대해 여러 가지의 변수를 적용하여 각각의 변수가 접합부의 구조성능에 미치는 영향을 알아보고자 하였다.

2. 제안된 접합부의 평가실험

2.1 실험체 개요

용접 접합부는 접합 방법에 따라 다양한 형태를 가지며, 그 성능을 높이기 위해 차이가 나타난다. 기존접합부와 본 연구에서 제안한 접합부는 ALT 1, ALT 2 접합부의 각 부분의 명칭 및 변형을 위한 스트레인 게이지의 부착 위치는 그림 1~3에 도식화 하였다.

기존 접합부는 나고야 등(日本建築学会, 2004)에 적용된 접합부를 바탕으로 수정체계 되었으며, 주강관 내부에 다이어프럼을 적용한 형태이다. 나고야 등에서 주강관 내부 성, 하부가 수평으로 정전된 구구형의 주로 제작되었으나, 본 연구에서는 사방향의 문제로 다이어프럼 및 강관을 용접하여 제작하였다.

ALT 1 접합부는 주강관의 외부에 가넷 플레이트를 적용하였으며, 강관관의 각도조절과 사공성의 설계를 위해 가넷 플레이트의 단부 9 mm 두께의 플레이트로 한반 더 두꺼운 형태로 고안하였다.

ALT 2 접합부는 주강관의 외부에 다이어프럼을 적용하였으며, 가넷 플레이트와 유사한 삽입 플레이트를 적용하였다. 이 러한 삽입 플레이트는 주강관과 지강관을 연결시켜주는 역할을 하며, 다이어프럼으로써 최고 내력을 확보하도록 고안되었 다. 외다이어프럼은 주강관이 받는 압축력과 안정력에 지향하는 시스템으로, 주강관의 상, 하부에서 각각 10 mm 떨어진 지점에 적용하였으며, 플레이트의 두께는 9 mm로 하였다. 또한 삽입 플레이트를 구축하는 역할도 하며, 이로 인해 삽입 플레이트의 형태에 대한 안정성을 높여준다.

2.2 실험 개요

기존접합부, ALT 1, ALT 2 실험체를 각각 가릭프레임 위에 올리놓고, 최대하중 100 ton의 오일체 시스템을 이용하여 실험체 중앙부에 하중을 체계 하였다. 이때 하중의 고도 제어를 위
해 두께 20 mm의 원형의 지그 플레이트를 제작하여 주강관 위에 위치시키고 지그 플레이트의 중앙부에 가리하여 하중이 지그 플레이트를 통해 지강관의 단면으로 고르게 분포될 수 있도록 하였다.

2.3 실험 결과

기존접합부, ALT 1, ALT 2 실험체의 실험 결과, 3개의 실험체 모두 접합부와 인접한 지강관에서 파괴가 일어났다.

![그림 4. ALT 2 실험체의 세밀](image)

![그림 5. 기존 접합부의 파괴양상](image)

![그림 6. 기존 접합부의 Load-Strain Curve](image)

하중은 오일배 하부에 설치한 로드볼을 이용하여 측정하였으며, 변위는 실험체 중앙부에 2개의 LVDT를 설치하여 두 개의 평균값을 데이터로 사용하였다. 이때, 실험체 중앙부에서 지강관까지의 거리를 동일하게 하기 위해 원형강관 6개를 정육각형의 형태로 용접하여 지지반력을 제작하였으며, 실험용 지강관의 이동 및 예기치 못한 안전사고의 방지를 위해 지지반점에 가이드 플레이트를 용접하였다. 지점조각은 6개의 단부 모두 이동단으로 설정하였으며, 지지반점과 실험체의 마찰력을 최소화할 수 있도록 유압체로 사용하였다. 또한, 지강관 단부의 국부파괴의 방지를 위해 실차 형태의 보강철로를 제작하여 지강관의 단부에 산업하여 실험을 수행하였다. 그림 4는 기존 실험체 세밀이 확장된 모습이다. 실험체의 크기 및 플레이트와 강관의 밀착도는 높다고 한다. 여기서, 기존접합부의 플레이트 두께는 내다이어프먼의 두께이며, ALT 1의 플레이트 두께는 가려 플레이트의 두께를 말한다.

<table>
<thead>
<tr>
<th>지식</th>
<th>실험체별</th>
<th>기존접합부</th>
<th>ALT 1</th>
<th>ALT 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>주강관 (mm)</td>
<td>Ø267.4×8</td>
<td>Ø139.8×4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>지강관 (mm)</td>
<td>Ø101.6×3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>플레이트두께 (mm)</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>플레이트 삽입깊이 (mm)</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>여건의 유무</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

그림 5의 기존 접합부의 경우, 접합부와 인접한 지강관의 하부에서 균열이 관찰되었으며, 이어서 강관의 하부가 헛어지면서 하중이 감소되며 파괴를 보였다. 그림 6은 기존 접합부의 하중-변형을 곡선이다. 이 그래프에 나타날 바와 같이, 지강관 상부의 변형은 102 kN에서, 하부의 변형은 105 kN에서 급격하게 증가하여 상과하 두 강관의 상부와 하부에서는 변형이 거의 발생하지 않음을 알 수 있다.

ALT 1 실험체는 그림 7과 같이 먼저 중앙부의 원형 주강관이 육각형의 형태로 변형을 일으키고, 뒤이어 그림 8에서와 같이 지강관의 하부에서 파괴가 일어났다. 다른 실험체와는 달리 ALT 1 실험체는 대이어프먼이 적용되지 않았기 때문에, 가려 플레이트로는 주강관의 국부파괴의 방지에 효과적으로 기여하지 못한다고 사료된다. 그림 9의 하중-변형 곡선을 보면, 지강관 상부의 변형은 109 kN, 하부의 변형은 107 kN에서 급격하게 증가하였음을 알 수 있다. 또한, 주강관의 상부의 변형

한국강구조학회 논문집 제20권 5호(통권 96호) 2008년 10월 603
이영학·서상훈·김민숙·김희철·이성민

이들은 안정화를 통해 약 0.12%의 영구 변형이 발생하였다. 이는 주강관의 상부에 작용된 인장력으로 인한 것이며 판단된다.

그림 7. ALT 1 실험체의 주강관 변형

그림 8. ALT 1 실험체의 지강관 파괴

그림 9. ALT 1 실험체의 Load-Strain Curve

그림 10. ALT 2 실험체의 파괴양상

그림 11. ALT 2 실험체의 Load-Strain Curve

ALT 2 실험체에서는 기존 접합부와는 달리, 삽입 플레이트를 적용하였기 때문에 삽입플레이트의 상하부에서도 스트레칭 게이지를 부착하여 변형력을 측정하였다. 삽입플레이트는 전체 벽면 내에서 동작하는 것으로 나타났다. 그림 11의 하중-변형 곡선에서 살펴보면, 지강관의 상부는 117 kN, 하부는 119 kN에서 급격한 변형이 진행되었다고 알 수 있다.

기존접합부 ALT 1, ALT 2 실험체의 하중-변위 곡선은 그림 12에 나타나 있으며, 초기강성 및 내력은 표 2와 같다.

그림 12. 기존접합부와 제안된 접합부의 하중-변위 곡선
다다 나온 구조성능을 갖는 접합부를 제작하기 위하여 상기의 사항들을 각각 변수로 한 접합부 실험을 수행하였다.

실험세팅 및 실험방법은 앞서 수행한 실험과 동일하게 적용하였으며, 삽입깊이를 100mm를 기준으로 한 실험체의 크기 및 치수는 그림 13, 14, 표 3에 나타내었다.

3. 변수에 따른 접합부의 실험

3.1 실험체 개요

기준접합부, ALT 1, ALT 2 실험체의 실험 결과를 바탕으로 하여 기준접합부에 비해 초기강성 및 내력이 증가한 ALT 2 실험체에 대해 삽입 플레이트의 두께, 삽입깊이, 여과의 유무가 접합부의 구조성능에 미치는 영향을 고찰하여 ALT 2 보
3.2 실험 결과

제안된 접합부인 ALT 2 실험이에 대해 삽입플레이트의 두께, 삽입각이, 여량을 변수로 하여 6 종류의 실험이에 대해 실험이 수행한 결과는 다음과 같다.

W-50L, W-80L, W-120L, W-12T 실험이의 파괴양상을 ALT 2 실험이와 거의 유사하였으나, 초기강성과 내력에서는 차이가 있었다.

그림 15에서와 같이 W-6T 실험이는 지강판에서 변형이 발생한 ALT 2 실험이와는 달리, 삽입플레이트에서 먼저 환형 굴이 발생하였으며, 그로 인해 초기에 하중이 감소하였다. 그림 16에서와 같이 W-6T 실험이의 하중-변형을 복사에서는 ALT 2 실험이와는 달리 삽입플레이트에서 변형이 가장 크게 발생하는 것을 볼 수 있다.

그림 17. W-Hole 실험이의 여량

그림 18. W-Hole 실험이의 파괴

그림 15. W-6T 실험이의 파괴양상

그림 16. W-6T 실험이의 Load-Strain Curve

4. 변수에 따른 실험결과의 고찰

ALT 2 실험이에 적용된 삽입플레이트가 접합부의 성능에 미치는 영향을 알아보기 위해 삽입플레이트의 길이와 두께, 여량을 변수로 한 실험이 결과를 각각 비교하였다.

실험이 결과를 나타낸 표를 동한 실험이의 초기강성, 내력, 최대변형너지 등에 대한 수치적인 비교와 함께 하중-변형 곡선을 통해 각 실험이들 간의 관계에 대해 설명하였다.

4.1 삽입플레이트의 삽입길이에 따른 비교

삽입플레이트의 삽입 길이에 따른 강성 및 내력에 대한 비교를 표 4와 그림 19에 나타내었다. 삽입플레이트의 길이가 길어 점수록 초기강성 및 항복하중, 최대하중이 증가되는 것을 알 수 있다.
4.2 삼업플레이트의 두께에 따른 비교

표 5와 그림 20에 나타낸 바와 같이 삼업 플레이트의 두께가 증가함수록 초기강성이 증가하여 W-12T 실험체가 6.78 kN/mm 로 가장 높은 결과를 나타냈습니다. 극한바전은 ALT 2 실험체가 가장 높았으며, 최대 변형 에너지 또한 ALT 2 실험체가 6.683 kN.mm 로 가장 크게 나타났습니다. 이는 W-12T 실험체의 변형능력과 연성능력이 ALT 2 실험체에 비해 더 작다는 것을 의미합니다. 이러한 결과는 최대 변형 에너지에서도 볼 수 있으며, W-12T 실험체가 ALT 2 실험체에 비해 약 17% 정도 낮은 결과가 나타났습니다. 이는 삼업 플레이트가 두꺼운 두께 이상이 되면 부재에 비교적 부족하게 큰 강성을 갖게 되어 부재에서의 취득적인 기동이 발생하기 때문으로 판단됩니다.

3.6T 실험체의 경우 다른 실험체에 비해 초기에 내력이 감소하였다. 이는 삼업 플레이트의 세장비 영향에 따른 화학적 현상에 따라 판단됩니다.

4.3 여성의 유무에 따른 비교

표 6과 그림 21에서는 여성의 유무에 따른 강성 및 내력을 비교하였습니다. 실험 결과, 강성 및 내력, 최대 변형 에너지 모두 ALT 2 실험체가 약 6~13% 가장 높게 나타났음을 알 수 있습니다.
표 7. 여양의 유무에 따른 강성 및 내력

<table>
<thead>
<tr>
<th>결과</th>
<th>실험체형</th>
<th>W-Hole</th>
<th>ALT 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>초기강성 (kN/mm)</td>
<td>6.22</td>
<td>6.62</td>
<td></td>
</tr>
<tr>
<td>항복허중 (kN)</td>
<td>88.61</td>
<td>100.02</td>
<td></td>
</tr>
<tr>
<td>항복변위 (mm)</td>
<td>15.30</td>
<td>16.40</td>
<td></td>
</tr>
<tr>
<td>극한허중 (kN)</td>
<td>124.18</td>
<td>143.29</td>
<td></td>
</tr>
<tr>
<td>극한변위 (mm)</td>
<td>50.00</td>
<td>55.80</td>
<td></td>
</tr>
<tr>
<td>E_{max} (kN-mm)</td>
<td>5.034</td>
<td>6.638</td>
<td></td>
</tr>
<tr>
<td>$K_1/K_{i,ALT2}$</td>
<td>0.94</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$P_s/P_{y,ALT2}$</td>
<td>0.89</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$P_u/P_{u,ALT2}$</td>
<td>0.87</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

그림 21. 여양의 유무에 따른 하중-변위 극선

이는 접합부에서 전달된 응력이 삽입 플레이트를 따라 저장 될 것으로 전달되는 과정에 있어서 전달되는 부분의 유효 단면 강소로 인해 내력 및 강성이 저하됨으로 판단된다.

5. 결론

본 연구에서는 기존의 옵진 접합부에 비교 구조상성이 향상된 새로운 형제의 연합 접합부를 제안하고 다양한 변수를 적용한 실험을 통해 제안한 접합부의 성능을 검토하였으며, 그 결과는 다음과 같다.

(1) 기존 접합부와 제안된 접합부인 ALT 1, ALT 2 실험체에 대한 실험을 수행한 결과, ALT 2 실험체의 강성 및 내력이 기존 접합부에 비해 각각 5%, 18% 증가한 것으로 나타났다.
(2) 삽입플레이트의 삽입각이 커질수록 초기강성이 증가하는 경향을 보였으나, 항복변위 및 에너지 변형 능력은 감소하는 것으로 나타났다. W-120L 실험체의 경우, ALT 2 실험체에 비해 강성은 약 8% 증가한 반면, 에너지 변형 능력은 약 19% 감소하였다.
(3) 삽입플레이트의 두께는 일정 두께 이상을 만족시켜야 하며, 두께가 6mm인 W-6T 실험체의 경우 삽입 플레이트에서 심한 변형이 발생하여 초기에 하중이 감소하였고, 또한 W-12T 실험체는 ALT2 실험체에 비해 초기강성은 약 2% 증가한 반면, 에너지 변형 능력은 약 17% 감소하였다.
(4) 여기의 유무에 따른 비교실험 결과, W-Hole 실험체에서 인하 유효단면의 감소로 인해 ALT 2 실험체보다 강성 및 내력이 각각 약 6% 및 약 11% 감소하였다.
(5) 추후 본 연구에 제안한 2층조합부의 실제 적용을 위한 설계상의 제안에 관한 연구가 필요할 것으로 사료된다.

감사의 글

본 연구는건설교통부 연구개발사업의 연구비 지원 (과제번호 06 건설학점B03)에 의해 수행되었습니다.

참고문헌

日本建築学会(2004), ドーム構造の技術レビュー: 事業をとりあげて最新構造計技術をみる, 日本建築学会, 日本.

(접수일자 : 2008. 7. 4 / 심사일 2008. 7. 25 / 게재일2008. 10. 10)