Deactivation and Regeneration of a Used De-NOx SCR Catalyst for Wastes Incinerator

소각로 SCR 폐탈질 촉매의 피독과 효율재생에 관한 연구

  • Lee, Sang-Jin (Department of Environmental Engineering, Kyonggi University) ;
  • Hong, Sung-Chang (Department of Environmental Engineering, Kyonggi University)
  • Received : 2008.03.25
  • Accepted : 2008.05.06
  • Published : 2008.06.10

Abstract

The catalytic activity of the used catalyst, $V_2O_5/TiO_2$, for MSW incinerators was investigated focusing on its regeneration. As the result of the experimental analysis, the NOx removal efficiency difference between the fresh catalyst and used catalyst is about 60% at $260^{\circ}C$ and 1, 2-dichlorobenzen (1, 2-DCB) removal efficiency difference is about 14% at $200^{\circ}C$, in honeycomb test. And the catalysts, both the fresh and used, were characterized by XRD, TGA, and ICP techniques in order to investigate the deactivation. On the basis of the results, it is found that the used catalyst is deactivated by ammonium-sulfates, heavy metals (Pb, As etc.), alkali metals (Ca), and phase transfer of $TiO_2$. Also calcination treatment under nitrogen and air condition was excellent than washing and calcination treatment.

References

  1. H. Bosch and F. Janssen, Catal. Today, 2, 369 (1988) https://doi.org/10.1016/0920-5861(88)80002-6
  2. P. Forzatti, Catal. Today, 62, 51 (2000) https://doi.org/10.1016/S0920-5861(00)00408-9
  3. N. Isabella, D. Lorenzo, L. Luca, G. Elio, and F. Pio, Appl. Catal. B: Environ., 35, 31 (2001) https://doi.org/10.1016/S0926-3373(01)00229-6
  4. T. Tanaka, T. Okuhara, and M. Misono., Catal. Today, 26, 185 (1995) https://doi.org/10.1016/0920-5861(95)00136-4
  5. L. Lietti., Appl. Catal. B: Environ., 10, 281 (1996) https://doi.org/10.1016/S0926-3373(97)80001-X
  6. M. Inomata, K. Mori, A. Ui, T. Myiamoto, and Y. Murakami., J. Phys. Chem., 87, 754 (1983) https://doi.org/10.1021/j100228a013
  7. P. Forzatti and L, Lietti., La Chimicae lindustria, 78, 685 (1996)
  8. H. teng and T. S. Huang, Fuel, 75, 149 (1996) https://doi.org/10.1016/0016-2361(95)00231-6
  9. R. Khodayari, Ind. Eng. Chem. Res., 37, 1196 (1998) https://doi.org/10.1021/ie9706065
  10. S. W. Ham, B. W. Soh, and I. S. Nam, J. Korea Ind. Eng. Chem., 15, 373 (2004)
  11. Z. Zhu, Z. Liu, H. Niu, S. Liu, T. Hu, T. Liu, and Y. Xie, J. Catal., 197, 6 (2001) https://doi.org/10.1006/jcat.2000.3052
  12. S. Kasaoka, E. Sasaoka, and H. Iwasaki, Bull. Chem. Soc. Jpn, 62, 1226 (1989) https://doi.org/10.1246/bcsj.62.1226
  13. R. Kiyoura and K. Urano, Ind. Eng. Chem. Res., 9, 489 (1970)
  14. O. Carlo, B. Alessandra, F. Pio, S. Jiri, T. Enrico, B. Fiorenzo, and B. Aldo, Catal. today, 27, 15 (1996) https://doi.org/10.1016/0920-5861(95)00168-9
  15. S. H. Moon, S. G. Jeon, and W. H. Roo, Korean Society of Environmental Engineers, 26, 270 (2004)
  16. J. M. Pearson, H. Ryu, W. C. Wong, and K. Nobelnd., Eng. Che. Prod. Dev, 22, 381 (1983) https://doi.org/10.1021/i300010a042