DOI QR코드

DOI QR Code

Control of Rumen Microbial Fermentation for Mitigating Methane Emissions from the Rumen

Mitsumori, Makoto;Sun, Weibin

  • 발행 : 2008.01.01

초록

The rumen microbial ecosystem produces methane as a result of anaerobic fermentation. Methanogenesis in the rumen is thought to represent a 2-12% loss of energy intake and is estimated to be about 15% of total atmospheric methane emissions. While methanogenesis in the rumen is conducted by methanogens, PCR-based techniques have recently detected many uncultured methanogens which have a broader phylogenetic range than cultured strains isolated from the rumen. Strategies for reduction of methane emissions from the rumen have been proposed. These include 1) control of components in feed, 2) application of feed additives and 3) biological control of rumen fermentation. In any case, although it could be possible that repression of hydrogen-producing reactions leads to abatement of methane production, repression of hydrogen-producing reactions means repression of the activity of rumen fermentation and leads to restrained digestibility of carbohydrates and suppression of microbial growth. Thus, in order to reduce the flow of hydrogen into methane production, hydrogen should be diverted into propionate production via lactate or fumarate.

키워드

Methane;Rumen;Rumen Microorganisms;Methanogens

참고문헌

  1. Asanuma, N., M. Iwamoto and T. Hino. 1999b. The production of formate, a substrate for methanogenesis, from compounds related with the glyoxylate cycle by mixed ruminal microbes. Anim. Sci. J. 70:67-73.
  2. Asanuma, N. and T. Hino. 2000a. Effects of pH and energy supply on activity and amount of pyruvate formate-lyase in Streptococcus bovis. Appl. Environ. Microbiol. 66:3773-3777. https://doi.org/10.1128/AEM.66.9.3773-3777.2000
  3. Asanuma, N. and T. Hino. 2000b. Activity and properties of fumarate reductase in ruminal bacteria. J. Gen. Appl. Microbiol. 46:119-125. https://doi.org/10.2323/jgam.46.119
  4. Blaxter, K. L. and J. L. Clapperton. 1965. Prediction of the amount of methane produced by ruminants. Br. J. Nutr. 19:511-522. https://doi.org/10.1079/BJN19650046
  5. Busquet, M., S. Calsamiglia, A. Ferret, P. W. Cardozo and C. Kamel. 2005. Effects of cinnamaldehyde and garlic oil on rumen microbial fermentation in a dual flow continuous culture. J. Dairy Sci. 88:2508-2516. https://doi.org/10.3168/jds.S0022-0302(05)72928-3
  6. Busquet, M., S. Calsamiglia, A. Ferret and C. Kamel. 2006. Plant extracts affect in vitro rumen microbial fermentation. J. Dairy Sci. 89:761-771. https://doi.org/10.3168/jds.S0022-0302(06)72137-3
  7. Asanuma, N., M. Iwamoto and T. Hino. 1999a. Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. J. Dairy Sci. 82:780-787. https://doi.org/10.3168/jds.S0022-0302(99)75296-3
  8. Dohme, F., A. Machmüller, A. Wasserfallen and M. Kreuzer. 2001. Ruminal methanogenesis as influenced by individual fatty acids supplemented to complete ruminant diets. Lett. Appl. Microbiol. 32:47-51. https://doi.org/10.1046/j.1472-765x.2001.00863.x
  9. Dong Y., H. D. Bae, T. A. McAllister, G. W. Mathison and K.-J. Cheng. 1997. Lipid-induced depression of methane production and digestibility in the artificial rumen system (RUSITEC). Can. J. Anim. Sci. 77:269-278. https://doi.org/10.4141/A96-078
  10. Ermler, U., W. Grabarse, S. Shima, M. Goubeaud and R. K. Thauer. 1997. Crystal structure of methyl coenzyme M reductase: the key enzyme of biological methane formation. Sci. 278:1457-1462. https://doi.org/10.1126/science.278.5342.1457
  11. Fahey, G. C. Jr., L. D. Bourquin, E. C. Titgemeyer and D. G. Atwell. 1993. Postharvest treatment of fibrous feedstuffs to improve their nutritive value. In: Forage Cell Wall Structure and Digestibility (Ed. H. G. Jung, D. R. Buxton, R. D. Hatfield and J. Ralph), American Society of Agronomy, Madison, Wisconsin, USA. pp. 715-766.
  12. Finlay, B. J., G. Esteban, K. J. Clarke, A. G. Williams, T. M. Embley and R. P. Hirt. 1994. Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol. Lett. 117:157- 161. https://doi.org/10.1111/j.1574-6968.1994.tb06758.x
  13. Friedrich, M. W. 2005. Methyl-coenzyme M reductase genes: unique functional markers for methanogenic and anaerobic methane-oxidizing Archaea. Methods Enzymol. 397:428-442. https://doi.org/10.1016/S0076-6879(05)97026-2
  14. Garcia-Martinez, R., M. J. Ranilla, M. L. Tejido and M. D. Carro. 2005. Effects of disodium fumarate on in vitro rumen microbial growth, methane production and fermentation of diets differing in their forage:concentrate ratio. Br. J. Nutr. 94:71-77. https://doi.org/10.1079/BJN20051455
  15. Carro, M. D. and M. J. Ranilla. 2003a. Effect of the addition of malate on in vitro rumen fermentation of cereal grains. Br. J. Nutr. 89:181-188. https://doi.org/10.1079/BJN2002759
  16. Carro, M. D. and M. J. Ranilla. 2003b. Influence of different concentrations of disodium fumarate on methane production and fermentation of concentrate feeds by rumen microorganisms in vitro. Br. J. Nutr. 90:617-623. https://doi.org/10.1079/BJN2003935
  17. Chalupa, W. 1977. Manipulating rumen fermentation. J. Anim. Sci. 46:585-599.
  18. Counotte, G. H. M., R. A. Prins, R. H. A. M. Janssen and M. J. A. deBie. 1981. Role of Megasphaera elsdenii in the Fermentation of dl-[2-13C]lactate in the Rumen of Dairy Cattle. Appl. Environ. Microbiol. 42:649-655.
  19. Czerkawski, J. W. 1969. Methane production in ruminants and its significance. World Review of Ruminants and Dietetics 11:240-282.
  20. Dawson, K. A., M. A. Rasmussen and M. J. Allison. 1997. Digestive disorders and nutritional toxicity. In: The Rumen Microbial Ecosystem. 2nd ed. (Ed. P. J. Hobson and C. S. Stewart), Blackie Acad. Profess. London. pp. 633-660.
  21. Dennis, S. M., T. G. Nagaraja and A. D. Dayton. 1986. Effect of lasalocid, monensin and thiopeptin on rumen protozoa. Res. Vet. Sci. 41:251-256.
  22. Dohme, F., A. Machmüller, A. Wasserfallen and M. Kreuzer. 2000. Comparative efficiency of various fats rich in medium-chain fatty acids to suppress ruminal methanogenesis as measured with RUSITEC. Can. J. Anim. Sci. 80:473-484. https://doi.org/10.4141/A99-113
  23. Hu, W. L., Y. M. Wu, J. X. Liu, Y. Q. Guo and J. A. Ye. 2005. Tea saponins affect in vitro fermentation and methanogenesis in faunated and defaunated rumen fluid. J. Zhejiang Univ. Sci. 6B:787-792. https://doi.org/10.1631/jzus.2005.B0787
  24. Irbis, C. and K. Ushida. 2004. Detection of methanogens and proteobacteria from a single cell of rumen ciliate protozoa. J. Gen. Appl. Microbiol. 50:203-212. https://doi.org/10.2323/jgam.50.203
  25. Hungate, R. E. 1966. The rumen and its microbes. Acad. Press, New York, USA.
  26. Hungate, R. E., W. Smith, T. Bauchop, Ida Yu and J. C. Rabinowitz. 1970. Formate as an Intermediate in the Bovine Rumen Fermentation. J. Bacteriol. 102:389-397
  27. Iwamoto, M., N. Asanuma and T. Hino. 1999. Effects of nitrate combined with fumarate on methanogenesis, fermentation, and cellulose digestion by mixed ruminal microbes in vitro. Anim. Sci. J. 70:471-478.
  28. Jarvis, G. N., C. Strompl, D. M. Burgess, L. C. Skillman, E. R. B. Moore and K. N. Joblin. 2000. Isolation and identification of ruminal methanogens from grazing cattle. Curr. Microbiol. 40:327-332. https://doi.org/10.1007/s002849910065
  29. Kajikawa, H., C. Valdes, K. Hillman, R. J. Wallace and C. J. Newbold. 2003. Methane oxidation and its coupled electronsink reactions in ruminal fluid. Lett. Appl. Microbiol. 36:354- 357. https://doi.org/10.1046/j.1472-765X.2003.01317.x
  30. Klieve, A. V. and R. S. Hegarty. 1999. Opportunities for biological control of ruminal methanogenesis. Aust. J. Agric. Res. 50: 1315-1320. https://doi.org/10.1071/AR99006
  31. Kume, S. 2002. Establishment of profitable dairy farming system on control of methane production in Hokkaido region. In: Greenhouse Gases and Animal Agriculture. (Ed. J. Takahashi and B. A. Young), Elsevier, Amsterdam. pp. 87-94.
  32. Kurihara, M., M. Shibata, T. Nishida, A. Purnomoadi and F. Terada. 1997. Methane production and its dietary manipulation in ruminants. In: Ruminal Microbes and Digestive Physiology in Ruminants (Ed. R. Onodera et al.) Japan Scientific Societies Press, Tokyo, Japan. pp 199-208.
  33. Kurihara, M., T. Nishida, A. Purnomoadi, M. Shibata and F. Terada. 2002. The prediction of methane conversion rate from dietary factors. In: Greenhouse Gases and Animal Agriculture. (Ed. J. Takahashi and B. A. Young), Elsevier, Amsterdam. pp. 171-174.
  34. Gill, H. S., Q. Shu and R. A. Leng. 2000. Immunization with Streptococcus bovis protects against lactic acidosis in sheep. Vaccine. 18:2541-2548. https://doi.org/10.1016/S0264-410X(00)00017-7
  35. Gomez, J. A., M. L. Tejido and M. D. Carro. 2005. Influence of disodium malate on microbial growth and fermentation in rumen-simulation technique fermenters receiving medium- and high-concentrate diets. Br. J. Nutr. 93:479-484. https://doi.org/10.1079/BJN20041367
  36. Hegarty, R. S. 2002. Strategies for mitigating methane emissions from livestock-Australian options and opportunities. In: Greenhouse Gases and Animal Agriculture (Ed. J. Takahashi and B. A. Young). Elsevier, Amsterdam. pp. 61-65.
  37. Hino, T., K. Takeshi, M. Kanda and S. Kumazawa. 1993. Effects of aibellin, a novel peptide antibiotic, on rumen fermentation in vitro. J. Dairy Sci. 76:2213-2221. https://doi.org/10.3168/jds.S0022-0302(93)77558-X
  38. Hino, T., H. Saitoh, T. Miwa, M. Kanda and S. Kumazawa. 1994. Effect of aibellin, a peptide antibiotic, on propionate production in the rumen of goats. J. Dairy Sci. 77:3426-3431. https://doi.org/10.3168/jds.S0022-0302(94)77285-4
  39. Hoogenraad, N. J., F. J. Hirk, I. Holmes and N. F. Millis. 1967. Bacteriophages in rumen contents of sheep. J. Gen. Virol. 1:575-576. https://doi.org/10.1099/0022-1317-1-4-575
  40. Leng, R. A. 1993. Quantitative ruminant nutrition-A green science. Aust. J. Agric. Res. 44:363-380. https://doi.org/10.1071/AR9930363
  41. Lila, Z. A., N. Mohammed, S. Kanda, T. Kamada and H. Itabashi. 2003. Effect of sarsaponin on ruminal fermentation with particular reference to methane production in vitro. J. Dairy Sci. 86:3330-3336. https://doi.org/10.3168/jds.S0022-0302(03)73935-6
  42. Lila, Z. A., N. Mohammed, T. Yasui, Y. Kurokawa, S. Kanda and H. Itabashi. 2004. Effects of a twin strain of saccharomyces cerevisiae live cells on mixed ruminal microorganism fermentation in vitro. J. Anim. Sci. 82:1847-1854. https://doi.org/10.2527/2004.8261847x
  43. Lovett, D. K., D. McGilloway, A. Bortolozzo, M. Hawkins, J. Callan, B. Flynn and F. P. O'Mara. 2006. In vitro fermentation patterns and methane production as influenced by cultivar and season of harvest of Lolium perenne L. Grass and Forage Sci. 61:9-21. https://doi.org/10.1111/j.1365-2494.2006.00500.x
  44. Luton, P. E., J. M. Wayne, R. J. Sharp and P. W. Riley. 2002. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiol. 148:3521-3530. https://doi.org/10.1099/00221287-148-11-3521
  45. Martin, S. A., D. J. Nisbet and R. G. Dean. 1989. Influence of a commercial yeast supplement on the in-vitro ruminal fermentation. Nutr. Rep. Int. 40:395-403.
  46. McCaughey, W. P., K. Wittenberg and D. Corrigan. 1997. Methane production by steers on pasture. Can. J. Anim. Sci. 77:519-524. https://doi.org/10.4141/A96-137
  47. Machmuller, A., C. R. Soliva and M. Kreuzer. 2003. Effect of coconut oil and defaunation treatment on methanogenesis in sheep. Reprod. Nutr. Dev. 43:41-55. https://doi.org/10.1051/rnd:2003005
  48. McCrabb, G. J., K. T. Berger, T. Magner, C. May and R. A. Hunter. 1997. Inhibiting methane production in Brahman cattle by dietary supplementation with a novel compound and the effects on growth. Aust. J. Agric. Res. 48:323-329. https://doi.org/10.1071/A96119
  49. Miller, T. L. and M. J. Wolin. 2001. Inhibition of growth of methane-producing bacteria of the ruminant forestomach by hydroxymethylglutaryl-SCoA reductase inhibitors. J. Dairy Sci. 84:1445-1448. https://doi.org/10.3168/jds.S0022-0302(01)70177-4
  50. Lee, S. S., J. T. Hsu, H. C. Mantovani and J. B. Russell. 2002. The effect of bovicin HC5, a bacteriocin from Streptococcus bovis HC5, on ruminal methane production in vitro. FEMS Microbiol. Lett. 217:51-55. https://doi.org/10.1111/j.1574-6968.2002.tb11455.x
  51. Regensbogenova, M., N. R. McEwan, P. Javorsky, S. Kisidayova, T. Michalowski, C. J. Newbold, J. H. Hackstein and P. Pristas. 2004. A re-appraisal of the diversity of the methanogens associated with the rumen ciliates. FEMS Microbiol. Lett. 238:307-313. https://doi.org/10.1111/j.1574-6968.2004.tb09771.x
  52. Russell, J. B. and D. B. Dombrowski. 1980. Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture. Appl. Environ. Microbiol. 39:604-610.
  53. Russell, J. B. and R. J. Wallace. 1997. Energy-yielding and energy-consuming reactions. In: The Rumen Microbial Ecosystem. 2nd ed. (Ed. P. J. Hobson and C. S. Stewart), Blackie Acad. Profess. London. pp. 246-282.
  54. Russell, J. B. 1998. The importance of pH in the regulation of ruminal acetate to propionate ratio and methane production in vitro. J. Dairy Sci. 81:3222-3230. https://doi.org/10.3168/jds.S0022-0302(98)75886-2
  55. Russell, J. B. and A. J. Houlihan. 2003. Ionophore resistance of ruminal bacteria and its potential impact on human health. FEMS Microbiol. Rev. 27:65-74. https://doi.org/10.1016/S0168-6445(03)00019-6
  56. Satter, L. D., J. W. Suttie and B. R. Baumgardt. 1964. Dietary induced changes in volatile fatty acid formation from cellulose-C14 and hemicellulose-C14. J. Dairy Sci. 47:1365- 1370. https://doi.org/10.3168/jds.S0022-0302(64)88919-0
  57. Shibata, M., F. Terada, K. Iwasaki, M. Kurihara and T. Nishida. 1992. Methane Production in heifers, sheep and goats consuming diets of various hay-concentrations, Anim. Sci. Technol. 63:1221-1227.
  58. Shibata, M., F. Terada, M. Kurihara, T. Nishida and K. Iwasaki. 1993. Estimation of methane production in ruminants. Anim. Sci. Technol. 64:790-796.
  59. Shima, S., E. Warkentin, R. K. Thauer and U. Ermler. 2002. Structure and function of enzymes involved in the methanogenic pathway utilizing carbon dioxide and molecular hydrogen. J. Biosci. Bioeng. 93:519-530. https://doi.org/10.1016/S1389-1723(02)80232-8
  60. Shu, Q., M. A. Hillard, B. M. Bindon, E. Duan, Y. Xu, S. H. Bird, J. B. Rowe, V. H. Oddy and H. S. Gill. 2000. Effects of various adjuvants on efficacy of a vaccine against Streptococcus bovis and Lactobacillus spp. in cattle. Am. J. Vet. Res. 61:839-843. https://doi.org/10.2460/ajvr.2000.61.839
  61. Orpin, C. G. and K. N. Joblin. 1997. The rumen anaerobic fungi. In: The Rumen Microbial Ecosystem. 2nd ed. (Ed. P. J. Hobson and C. S. Stewart), Blackie Acad. Profess. London. pp. 140-195.
  62. Ungerfeld, E. M., S. R. Rust and R. Burnett. 2003. Use of some novel alternative electron sinks to inhibit ruminal methanogenesis. Reprod. Nutr. Dev. 43:189-202. https://doi.org/10.1051/rnd:2003016
  63. Ungerfeld, E. M., S. R. Rust, D. R. Boone and Y. Liu. 2004. Effects of several inhibitors on pure cultures of ruminal methanogens. J. Appl. Microbiol. 97:520-526. https://doi.org/10.1111/j.1365-2672.2004.02330.x
  64. Ushida, K. and J. P. Jouany. 1996. Methane production associated with rumen-ciliated protozoa and its effect on protozoan activity. Lett. Appl. Microbiol. 23:129-132. https://doi.org/10.1111/j.1472-765X.1996.tb00047.x
  65. Vogels, G. D., W. F. Hoppe and C. K. Stumm. 1980. Association of methanogenic bacteria with rumen ciliates. Appl. Environ. Microbiol. 40:608-612.
  66. Wallace, R. J. 2004. Antimicrobial properties of plant secondary metabolites. Proc. Nutr. Soc. 63:621-629. https://doi.org/10.1079/PNS2004393
  67. Weimer, P. J. 1998. Manipulating ruminal fermentation: a microbial ecological perspective. J. Anim. Sci. 76:3114-3122. https://doi.org/10.2527/1998.76123114x
  68. Whitelaw, F. G., J. M. Eadie, L. A. Bruce and W. J. Shand. 1984. Methane formation in faunated and ciliate-free cattle and its relationship with rumen volatile fatty acid proportions. Br. J. Nutr. 52:261-275. https://doi.org/10.1079/BJN19840094
  69. Williams, A. G. and G. S. Coleman. 1997. The rumen protozoa, In: The Rumen Microbial Ecosystem. 2nd ed. (Ed. P. J. Hobson and C. S. Stewart), Blackie Acad. Profess. London. pp. 73-139.
  70. Wolin, M. J. 1979. The rumen fermentation: a model for microbial interactions in anaerobic ecosystems. Adv. Microbial. Ecol. 3:49-77.
  71. Wolin, M. J., T. L. Miller and C. S. Stewart. 1997. Microbemicrobe interactions In: The Rumen Microbial Ecosystem. 2nd ed. (Ed. P. J. Hobson and C. S. Stewart), Blackie Acad. Profess. London. pp. 467-491.
  72. Wright, A. D., P. Kennedy, C. J. O'Neill, A. F. Toovey, S. Popovski, S. M. Rea, C. L. Pimm and L. Klein. 2004a. Reducing methane emissions in sheep by immunization against rumen methanogens. Vaccine. 22:3976-3985. https://doi.org/10.1016/j.vaccine.2004.03.053
  73. Stewart, C. S. 1977. Factors Affecting the Cellulolytic Activity of Rumen Contents. Appl. Environ. Microbiol. 33:497-502.
  74. Stewart, C. S., H. J. Flint and M. P. Bryant. 1997. The rumen bacteria. In: The Rumen Microbial Ecosystem. 2nd ed. (Ed. P. J. Hobson and C. S. Stewart), Blackie Acad. Profess. London. pp. 10-72.
  75. Swain, R. A., J. V. Nolan and A. V. Klieve AV. 1996. Natural variability and diurnal fluctuations within the bacteriophage population of the rumen. Appl. Environ. Microbiol. 62:994- 997.
  76. Tajima, K., R. I. Aminov, T. Nagamine, H. Matsui, M. Nakamura and Y. Benno. 2001. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl. Environ. Microbiol. 67:2766-2774. https://doi.org/10.1128/AEM.67.6.2766-2774.2001
  77. Takahashi, J., B. Mwenya, B. Santoso, C. Sar, K. Umetsu, T. Kishimoto, K. Nishizaki, K. Kimura and O. Hamamoto. 2005. Mitigation of methane emission and energy recycling in animal agricultural systems. Asian-Aust. J. Anim. Sci. 18:1199-1208. https://doi.org/10.5713/ajas.2005.1199
  78. Tedeschi, L. O., D. G. Fox and T. P. Tylutki. 2003. Potential environmental benefits of ionophores in ruminant diets. J. Environ. Qual. 32:1591-1602. https://doi.org/10.2134/jeq2003.1591
  79. Tokura, M., I. Chagan, K. Ushida and Y. Kojima. 1999. Phylogenetic study of methanogens associated with rumen ciliates. Curr. Microbiol. 39:123-128. https://doi.org/10.1007/s002849900432
  80. Tatsuoka, N., N. Mohammed, M. Mitsumori, K. Hara, M. Kurihara and H. Itabashi. 2004. Phylogenetic analysis of methyl coenzyme-M reductase detected from the bovine rumen. Lett. Appl. Microbiol. 39:257-260. https://doi.org/10.1111/j.1472-765X.2004.01566.x
  81. Ueno, Y., K. Yamada, N. Yoshida, S. Maruyama and Y. Isozaki. 2006. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature. 440:516- 519. https://doi.org/10.1038/nature04584
  82. Skillman, L. C., P. N. Evans, C. Strompl and K. N. Joblin. 2006. 16S rDNA directed PCR primers and detection of methanogens in the bovine rumen. Lett. Appl. Microbiol. 42:222-228. https://doi.org/10.1111/j.1472-765X.2005.01833.x
  83. Ulyatt, M. J., K. R. Lassey, I. D. Shelton and C. F. Walker. 2002. Seasonal variation in methane emission from dairy cows and breeding ewes grazing ryegrass/white clover pasture in New Zealand. New Zealand J. Agri. Res. 45:217-226. https://doi.org/10.1080/00288233.2002.9513512
  84. Yan, T., R. E. Agnew, F. J. Gordon and M. G. Porter. 2000. Prediction of methane energy output in dairy and beef cattle offered grass silage-based diets. Livest. Prod. Sci. 64:253-263. https://doi.org/10.1016/S0301-6226(99)00145-1
  85. Yoshii T., N. Asanuma and T. Hino. 2005. Effect of ethanol on nitrate and nitrite reduction and methanogenesis in the ruminal microbiota. Anim. Sci. J. 76:37-42. https://doi.org/10.1111/j.1740-0929.2005.00235.x
  86. Denman, S. E., N. Tomkins and C. S. McSweeney. 2006. Monitoring the effect of bromochloromethane on methanogen populations within the rumen using qPCR. The 2nd International Conference on Greenhouse Gases and Animal Agriculture GGAA2005-Working papers. pp. 112-114.
  87. Klieve, A. V., P. A. Bain, M. T. Yokoyama, D. Ouwerkerk, R. J. Forster and A. F. Turner. 2004. Bacteriophages that infect the cellulolytic ruminal bacterium Ruminococcus albus AR67. Lett. Appl. Microbiol. 38:333-338. https://doi.org/10.1111/j.1472-765X.2004.01493.x
  88. Mackie, R. I. and F. M. Gilchrist. 1979. Changes in lactateproducing and lactate-utilizing bacteria in relation to pH in the rumen of sheep during stepwise adaptation to a highconcentrate diet. Appl. Environ. Microbiol. 38:422-430.
  89. Mitsumori, M., N. Ajisaka, K. Tajima, H. Kajikawa and M. Kurihara. 2002a. Detection of Proteobacteria from the rumen by PCR using methanotroph-specific primers. Lett. Appl. Microbiol. 35:251-255. https://doi.org/10.1046/j.1472-765X.2002.01172.x
  90. Mitsumori, M., K. Tajima and H. Itabashi. 2002b. Detection of methanogens from the rumen by PCR-based techniques In: Greenhouse Gases and Animal Agriculture (Ed. J. Takahashi and B. A. Young), Elsevier, Amsterdam. pp. 125-128.
  91. Mohammed, N., N. Ajisaka, Z. A. Lila, K. Hara, K. Mikuni, K. Hara, S. Kanda and H. Itabashi. 2004. Effect of Japanese horseradish oil on methane production and ruminal fermentation in vitro and in steers. J. Anim. Sci. 82:1839-1846. https://doi.org/10.2527/2004.8261839x
  92. Nagaraja, T. G., C. J. Newbold, C. J. Van Nevel and D. I. Demeyer. 1997. Manipulation of ruminal fermentation. In: The Rumen Microbial Ecosystem. 2nd ed. (Ed. P. J. Hobson and C. S. Stewart), Blackie Acad. Profess. London. pp. 523-632.
  93. Newbold, C. J., R. J. Wallace and N. D. Walker. 1993. The effect of tetronasin and monensin on fermentation, microbial numbers and the development of ionophore-resistant bacteria in the rumen. J. Appl. Bacteriol. 75:129-134. https://doi.org/10.1111/j.1365-2672.1993.tb02757.x
  94. Newbold, C. J., B. Lassalas and J. P. Jouany. 1995. The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro. Lett. Appl. Microbiol. 21:230-234. https://doi.org/10.1111/j.1472-765X.1995.tb01048.x
  95. Newbold, C. J., K. Ushida, B. Morvan, G. Fonty and J. P. Jouany. 1996a. The role of ciliate protozoa in the lysis of methanogenic archaea in rumen fluid. Lett. Appl. Microbiol. 23:421-425. https://doi.org/10.1111/j.1472-765X.1996.tb01350.x
  96. Newbold, C. J., R. J. Wallace and F. M. McIntosh. 1996b. Mode of action of the yeast Saccharomyces cerevisiae as a feed additive for ruminants. Br. J. Nutr. 76:249-261. https://doi.org/10.1079/BJN19960029
  97. Newbold, C. J., S. Lopez, N. Nelson, J. O. Ouda, R. J. Wallace and A. R. Moss. 2005. Propionate precursors and other metabolic intermediates as possible alternative electron acceptors to methanogenesis in ruminal fermentation in vitro. Br. J. Nutr. 94:27-35. https://doi.org/10.1079/BJN20051445
  98. Newbold, C. J. and L. M. Rode. 2006. Dietary additives to control methanogenesis in the rumen. The 2nd International Conference on Greenhouse Gases and Animal Agriculture GGAA2005-Working papers. pp. 60-70.
  99. Russell, J. B. and J. L. Rychlik. 2001. Factors that alter rumen microbial ecology. Sci. 292:1119-1122. https://doi.org/10.1126/science.1058830
  100. Slyter, L. L. 1986. Ability of pH-Selected Mixed Ruminal Microbial Populations to Digest Fiber at Various pHs. Appl. Environ. Microbiol. 52:390-391.
  101. Wright, A. D., A. J. Williams, B. Winder, C. T. Christophersen, S. L. Rodgers and K. D. Smith. 2004b. Molecular diversity of rumen methanogens from sheep in Western Australia. Appl. Environ. Microbiol. 70:1263-1270. https://doi.org/10.1128/AEM.70.3.1263-1270.2004

피인용 문헌

  1. Combination Effects of Nitrocompounds, Pyromellitic Diimide, and 2-Bromoethanesulfonate on in Vitro Ruminal Methane Production and Fermentation of a Grain-Rich Feed vol.60, pp.1, 2012, https://doi.org/10.5713/ajas.2008.r01
  2. Effect of bromochloromethane and fumarate on phylogenetic diversity of the formyltetrahydrofolate synthetase gene in bovine rumen vol.85, pp.1, 2013, https://doi.org/10.5713/ajas.2008.r01
  3. Effect of cashew nut shell liquid on metabolic hydrogen flow on bovine rumen fermentation vol.85, pp.3, 2013, https://doi.org/10.5713/ajas.2008.r01
  4. Effects of Coconut Materials on In vitro Ruminal Methanogenesis and Fermentation Characteristics vol.27, pp.12, 2014, https://doi.org/10.5713/ajas.2008.r01
  5. Effects of Dietary Linseed Oil and Propionate Precursors on Ruminal Microbial Community, Composition, and Diversity in Yanbian Yellow Cattle vol.10, pp.5, 2015, https://doi.org/10.5713/ajas.2008.r01
  6. 外源添加产乙酸菌和酿酒酵母发酵物对瘤ƒƒ发酵特性及产乙酸菌菌群结构的影响 vol.16, pp.8, 2015, https://doi.org/10.5713/ajas.2008.r01
  7. rumen fermentation, methanogenesis and methanogens vol.87, pp.3, 2015, https://doi.org/10.5713/ajas.2008.r01
  8. The effect of a high-roughage diet on the metabolism of aromatic compounds by rumen microbes: a metagenomic study using Mehsani buffalo (Bubalus bubalis) vol.100, pp.3, 2016, https://doi.org/10.5713/ajas.2008.r01
  9. Effects of Medicinal Herb Extracts on In vitro Ruminal Methanogenesis, Microbe Diversity and Fermentation System vol.29, pp.9, 2016, https://doi.org/10.5713/ajas.2008.r01
  10. Degradabilidade de gramíneas, fermentação e protozoários no rúmen de bovinos em dietas com diferentes aditivos vol.18, pp.2, 2017, https://doi.org/10.5713/ajas.2008.r01
  11. The ruminal microbiome associated with methane emissions from ruminant livestock vol.8, pp.1, 2017, https://doi.org/10.5713/ajas.2008.r01
  12. In vitro rumen fermentation of soluble and non-soluble polymeric carbohydrates in relation to ruminal acidosis pp.1869-2044, 2017, https://doi.org/10.5713/ajas.2008.r01