Characterization of Embryonic Feather Follicle Development in the Chinese Indigenous Jilin White Goose

  • Wu, W. (Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology China Agricultural University) ;
  • Xu, R.F. (Department of Animal Science, College of Animal Science and Technology, Jilin Agricultural University) ;
  • Li, C.H. (Department of Animal Science, College of Animal Science and Technology, Jilin Agricultural University) ;
  • Wu, C.X. (Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology China Agricultural University)
  • Received : 2007.05.30
  • Accepted : 2007.07.24
  • Published : 2008.03.01


To investigate goose feather follicle development and difference among the dorsal, ventral, and thoracal tracts during embryonic stage, the present study was conducted on 180 embryos at different ages obtained from the Jilin White goose, a Chinese indigenous breed. The study indicated that the epidermis and dermis of goose embryo formed between embryonic day 10 (E10) and 12 (E12). The thickness of the epidermis remained unchanged until hatching; while the thickness of the dermis increased throughout embryonic development. The primary feather follicles formed around E13-E14 and there were no new primary feather follicles forming after E18. The secondary feather follicles formed coincidently at E18. The density of primary and secondary feather follicles on the ventral and thoracal tracts were significantly higher than those on the dorsal tract (p<0.05). For primary and secondary follicles, the diameter of the feather bulbs and the depth of the feather follicles on the dorsal tract were much greater than those on the thoracal and ventral tracts (p<0.01), respectively; while the difference between the ventral and thoracal tracts was not significant (p>0.05). It is concluded that the Jilin White goose is of a single-follicle group structure, differing from mammals which are of multiple-follicle group structure.


Goose;Feather Follicle;Embryonic Stage


Supported by : Technology Developmental Plan


  1. Tu, Y. J., K. W. Chen, S. J. Zhang, Q. P. Tang, Y. S. Gao, and N. Yang. 2006. Genetic Diversity of 14 Indigenous Grey Goose Breeds in China Based on Microsatellite Markers. Asian-Aust. J. Anim. Sci. 19(1):1-6.
  2. Wilde, T. P., D. L. Mcdowell, K. I. Jacob, and A. P. Aneja. 2006. A modified mullins model for compressive behavior of goose down fiber assemblies. Mech. Adv. Mater. Struct. 13(1):83-93.
  3. Sawyer, R. H., and L. W. Knapp. 2003. Avian skin development and the evolutionary origin of feathers. J. Exp. Zool. 298B:57-72.
  4. Snedecor, G. W., and W. G. Cochran. 1967. Statistical Methods. The Iowa State University Press, Iowa.
  5. Stenn, K. S., and R. Paus. 2001. Controls of Hair Follicle Cycling. Physiol. Reviews 81(1):449-494.
  6. Taylor, A. M., R. H. C. Bonser, and J. W. Farrent. 2004. The influence of hydration on the tensile and compressive properties of avian keratinous tissues. J. Mater. Sci. 39:939- 942.
  7. Paus, R., S. Muller-Rover, C. Vander-Veen, M. Maurer, S. Eichmuller, G. Ling, U. Hofmann, K. Foitzik, L. Mecklenburg, and B. Handjiski. 1999. A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. J. Invest. Dermatol. 113:523-532.
  8. Prum, R. O. 1999. Development and evolutionary origin of feathers. J. Exp. Zool. 285:291-306.<291::AID-JEZ1>3.0.CO;2-9
  9. Parry, A. L., B. W. Norton, and B. J. Restall. 1992. Skin follicle development in the Australian Cashmere goat. Aust. J. Agric. Res. 43:857-870.
  10. Lilja, C. 1981. Postnatal growth and organ development in goose (Anser anser). Growth 45:329-341.
  11. Lucas, A. M., and P. R. Stettenheim. 1972. Avian Anatomy- Integument. Agricultural Handbook. 362: Agricultural Research Services. US Department of Agriculture, Washington, DC.
  12. Mou, C., B. Jackson, P. Schneider, P. A. Overbeek, and D. J. Headon. 2006. Generation of the primary hair follicle pattern. Proc. Natl. Acad. Sci. USA. 103(24):9075-9080.
  13. Nohno, T., Y. Kawakami, H. Ohuchi, A. Fujiwara, H. Yoshioka, and S. Noji. 1995. Involvement of the sonic hedgehog gene in chick feather formation. Biochem. Biophys. Res. Commun. 206(1):33-39.
  14. Widelitz, R. B., T. X. Jiang, M. K. Yu, T. Shen, J. Y. Shen, P. Wu, Z. C. Yu, and C. M. Chuong. 2003. Molecular biology of feather morphogenesis: a testable model for evo-devo research. J. Exp. Zool. 298:109-122.
  15. Wolpert, L. 1998. Pattern formation in epithelial development: the vertebrate limb and feather bud spacing. Proc. R. Soc. London Ser. B353 (1370):871-875.
  16. Yu, M., P. Wu, R. B. Widelitz, and C. M. Chuong. 2002. The morphogenesis of feathers. Nature 420:308-312.
  17. Yue, Z., T. X. Jiang, R. B. Widelitz, and C. M. Chuong. 2006. Wnt3a gradient converts radial to bilateral feather symmetry via topological arrangement of epithelia. Proc. Natl. Acad. Sci. USA. 103(4):951-9555.
  18. Yu, M., Z. Yue, P. Wu, D. Y. Wu, J. A. Mayer, M. Medina, R. B. Widelitz, T. X. Jiang, and C. M. Chuong. 2004. The Developmental Biology of Feather Follicles. Int. J. Dev. Biol. 48:181-191.
  19. Haake, A. R., G. Konig, and R. H. Sawyer. 1984. Avian feather development: relationships between morphogenesis and keratinization. Dev. Bio. 6:406-413.
  20. Harris, M. P., J. F. Fallon, and R. O. Prum. 2002. Shh-Bmp2 signaling module and the evolutionary origin and diversification of feathers. J. Exp. Zool. 294:160-176.
  21. Harris, M. P., S. Williamsonmson, J. F. Fallon, H. Meinhardt, and R. O. Prum. 2005. Molecular evidence for an activatorinhibitor mechanism in development of embryonic feather branching. Proc. Natl. Acad. Sci. USA. 102(33):11734-11739.
  22. Jiang, T. X., R. B. Widelitz, W. M. Shen, P. Will, D.Y. Wu, C. M. Lin, H. S. Jung, and C. M. Chuong. 2004. Integument pattern formation involves genetic and epigenetic controls: feather arrays simulated by digital hormones. Int. J. Dev. Biol. 48:117- 135.
  23. Koul, G. L., J. C. Biswas, and R. Somvanshi. 1987. Follicle and fibre characteristics of Indian pashmina goats. Res. Vet. Sci. 43(3):398-400.
  24. Dhouailly, D. 1970. The determination of specific differentiation of neoptile and teleoptile feathers in the chick and the duck. J. Embryol. Exp. Morphol. 24:73-94.
  25. Alibardi, L. 2006. Cell structure of barb ridges in down feathers and juvenile wing feathers of the developing chick embryo: barb ridge modification in relation to feather evolution. Ann. Ana. 188(4):303-318.
  26. Bonser, R. H. C. 1995. Melanin and the abrasion resistance of feathers. Condor. 97:590-591.
  27. Dawson, A., S. A. Hinsley, P. N. Ferns, R. H. C. Bonser, and L. Eccleston. 2000. Rate of moult affects feather quality: a mechanism linking current reproductive effort to future survival. Proc. R. Soc. London Ser. B267:2093-2098.
  28. Alibardi, L. 2005. Cell structure of developing barbs and barbules in down feathers of the chick: Central role of barb ridge morphogenesis for the evolution of feathers. J. Sub. Cytol. Path. 37(1):19-41.

Cited by

  1. Follicle characteristics and follicle developmental related Wnt6 polymorphism in Chinese indigenous Wanxi-white goose vol.39, pp.11, 2012,
  2. De Novo Transcriptome Sequencing Analysis of Goose (Anser anser) Embryonic Skin and the Identification of Genes Related to Feather Follicle Morphogenesis at Three Stages of Development vol.19, pp.10, 2018,