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Design of Robust PI Controller for Vehicle Suspension System

Celaleddin Yeroglu* and Nusret Tan*

Abstract — This paper deals with the design of a robust PI controller for a vehicle suspension
system. A method, which is related to computation of all stabilizing PI controllers, is applied to the
vehicle suspension system in order to obtain optimum control between passenger comfort and
driving performance. The PI controller parameters are calculated by plotting the stability boundary

locus in the (& P> k;)-plane and illustrative results are presented. In reality, like all physical systems,

the vehicle suspension system parameters contain uncertainty. Thus, the proposed method is also
used to compute all the parameters of a PI controller that stabilize a vehicle suspension system with

uncertain parameters.

Keywords: Gain and phase margins, PI control, Robustness analysis, Stabilization, Uncertain

systems, Vehicle suspension system

1. Introduction

Nowadays, progress in the automobile industry is very
impressive. Automobile manufacturers aim to increase
passenger comfort besides increasing driving safety and
performance. Therefore, vehicle suspension is essential in
order to guarantee a high safety factor and ride
comfortability. Moreover, suspension modeling is very
important for a realistic suspension control design [1-3].
Passive suspension systems, which are designed by placing
a spring and a diminishing element between the wheel and
the body of the vehicle, allow forward compensation
between the driving comfort and deviation of the
suspension stroke. Because of the structural features of the
vehicles, the suspension stroke is limited between the
specified values. Thus, if suspension deviation reaches
these limit values, it causes reduced driving comfort.
Active suspension systems are designed by placing a
hydraulic system, which is controlled by feedback
controller, between the wheel and the body of the vehicle.
The suspension system controllers, which are designed by
using linear control methods, allow forward compensation
between the driving comfort and performance criteria of
deviation of the suspension [4-7]. Several types of

controllers like LQR control, H, control, P, PI, and PID

are used for the design of vehicle suspension systems [1-9].
On the other hand, in recent years, there have been some
new developments in the design of control systems.
Especially, there is a growing interest of calculating all
stabilizing P, P1, and PID controllers [10-19]. These control

*  Dept. of Electrical and Electronic Engineering, Inonu University,

Turkey. (cyeroglu@inonu.edu.tr), (ntan@inonu.edu.tr)
Received 19 September, 2007 ; Accepted 23 January, 2008

methods can be useful for the design of suspension systems.

In this paper, the stability boundary locus method [15] is
applied to a vehicle suspension system. All stabilizing PI
controllers are obtained for the system using this approach.

Equations for k » and kl. parameters are derived and the

stability boundary of the system is obtained using these
equations. Then, the stability regions for required gain and
phase margins are identified. It is known that, like all
physical systems, vehicle suspension systems also include
uncertainties. Thus, robustness analysis of the system
becomes very important and must be considered. In this
paper, in order to achieve a more realistic design, the
robust stability region of the system is identified by using
the Kharitonov theorem [20-21] and the stability boundary
locus approach. The method presented in this paper enables
one to design a robust Pl controller for a vehicle
suspension system by using the derived formulas and
investigated stability regions.

The paper is organized as follows: The proposed method
for controller stabilization and the design of PI controllers
that achieve user specified gain and phase margins is given
in Section 2. A suspension system for the quarter car model
and PI controller design for the model is provided in
Section 3. In Section 4, robustness analysis of the system is
studied. Conclusions are offered in Section 5.

2. Stabilization for Specified Gain and Phase
Margins Using a PI Controller

Consider the single-input single-output (SISO) control
system of Fig. 1 where
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Fig. 1. A SISO control system

G(s) = gg )

is the plant to be controlled and C(s) is a PI controller of

the form

. kst k;
C(s):kp+k—’= P )
S S

The problem is to compute the parameters of the PI
controller of Eq. (2) which stabilize the system of Fig. 1.

Decomposing the numerator and the denominator
polynomials of Eq. (1) into their even and odd parts, and
substituting § = jw , gives

Ne(-0?) + joN, (-0%) 3)

G(jo) == .
De(-0)+ j@D, (-a”)

The closed loop characteristic polynomial of the system
can be written as

A(jow) =

(kN ,(-0*)~k,0’N,(-0® - 0’D,(-0*)] “
+ jlk,oN (-0*)+ k,oN ,(-0*) + oD, (-0?)]
=R, +jl,=0

Then, equating the real and imaginary parts of A(jw)

to zero, one obtains
kp(~0?N,(-0?) + k(N (-0?) =0’D,(-0%) (5)
And
kp(oN,(-02) + ki (@N,(-0%) = -wD,(-0?) (6)

Solving these equations, it can be found that

_®*N,D, +N,D,

k
2 227 2
—(N,” +w°N,*)

p

()

and

:a)z(NoDe_NeDo) (8)

k.
~ (N2 +0*N,?)

1

Thus, the stability boundary locus, Ik ki, @) 5 in the
(ke poki) -plane can be obtained using Egs. (7) and (8). The
stability boundary locus, I(k,,k;,), and the line k; =0
(since a real root of A(s) of Eq. (4) can cross the
imaginary axis at s =0), thus, for =0, I, =0 and
from R, =0 it can be found that (£, =0) divides the
parameter plane ((kp,ki)-plane) into stable and unstable
regions. Choosing a test point within each region, the
stable region that contains the values of stabilizing & P
and k, parameters can be determined. Phase and gain

margins are two important frequency domain performance
measures that are widely used in classical control theory
for controller design. Consider Fig. 1 with a gain-phase

margin tester, G,(s)= Ae™7%, which is connected in the

feed forward path. Then,

_ (@”NoDe + N.De)cos(h) + o(N,D, = NeDp)sin(h) (9

k
? — AN, + @*N,?)
And
P wz(NoDe -N.D,)cos(hy—aw(N,D, + szoDo)sin(h) (10)
;=

— AN +*N,?)

where &= @7 + ¢ . To obtain the stability boundary locus

for a given value of gain margin A, one needs to set
¢ =10 in Egs. (9) and (10). On the other hand, setting

A=1 in Egs. (9) and (10), one can obtain the stability
boundary locus for a given phase margin ¢ . The details of

the method can be found in [15].

3. Vehicle Suspension System
3.1 Derivation of the Transfer Function

The words, sentences, and results given in this subsection
are completely taken from the textbook by Franklin et al. [22,
pp- 26-29]. Consider a vehicle with a four-wheel suspension
system. A system comprised of one wheel having suspension
is usually referred to as a quarter-car model. Let's assume a car
model has a mass of 1000 kg including the four wheels, which
have a mass of 20 kg each. By placing a known weight
directly over a wheel and measuring the car's deflection, it can
be found that &k, =130.000N/m , k, =1.000.000N /m.

and b =9800N.sec/m.[22] A vehicle suspension system
can be approximated by the simplified system as shown in
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Fig. 2. The coordinates of the two masses, x and y, with the
reference direction as shown, are the displacements of the
masses from their equilibrium conditions. The equilibrium
positions are offset from the springs' unstretched positions
because of the force of gravity. The shock absorber is
represented in the schematic diagram by a dashpot symbol
with friction constant 5. The magnitude of the force from
the shock absorber is assumed to be proportional to the rate
of change of the relative displacement of the two masses,
that is, to b(y—X). The force of gravity could be

included in the free body diagram; however, its effect is to
produce a constant offset of x and y. By defining x and yto
be the distance from the equilibrium position, the need to
include the gravity forces is eliminated.

Force from the car suspension acts on both masses in
proportion to their relative displacement with spring

constant ks . Fig. 2 shows the free body diagram of each

mass. Note that the force from the spring on the two
masses is equal in magnitude but acts in opposite directions
which is also the case for the damper. A positive
displacement y of mass m, will result in a force from the
spring on m; in the direction shown. However, a positive
displacement x of mass m; will result in a force from the
spring k, on m;, in the opposite difection to that drawn in
Fig. 3 as indicated by the minus x-term for the spring
force.

The lower spring k, represents the tire compressibility,

H

for which there is insufficient damping (velocity-
dependent force) to warrant including a dashpot in the
model. The force from this spring is proportional to the
distance the tire is compressed and the nominal equilibrium
force would be that required to support m; and m, against
gravity. By defining x to be the distances from equilibrium,
a force will result if either the road surface has a bump
(changes from its equilibrium value of zero) or the wheel
bounces (x changes). The motion of the simplified car over
a bumpy road will result in a value of r(#) that is not
constant. As noted above, there is a constant force of
gravity acting on each mass; however such force has been
omitted, as have the equal and opposite forces from the
springs. Gravitational forces can always be omitted from
vertical-spring mass systems, if the position coordinates
are defined from the equilibrium position that results when
gravity is acting and if the spring forces used in the
analysis are actually the perturbation in spring forces from
those forces acting at equilibrium.

Applying Newton's Law to each mass and noting that
some forces on each mass are in the negative (down)
direction yields the system of equations

b(y— %)+ ks (y—x) —ky, (x—r) = my¥, n)

pe
my T

ky Road surface

L\

r T Inertial reference

Fig. 2. The quarter car model

ks(y—x) b(y—x)

X y
k (T

b(y - X)L lmz l

Fig. 3. Free-body diagram for suspension system.

ks (y -

—ks(y=x)=b(y - %) =myy (12)

Some rearranging results in

k k
5C~+i(5c_y-)+_ki(x_y)+_wx:_wr, (13)
m my m m

5+ -n+ L (pn=0 (14)
my my

Taking Laplace transforms of Egs. (13) and (14), and
assuming that initial conditions are equal to zero yields,

$2X(s) + 52 (X ()~ Y(s) +
m (15)

£ 0(s) - Y6 + 22 x(9) =2 )
nmy ml m

s2Y(s)+ si(Y(S) - X(s)+
my (16)

K vis)-x(sy) =0
my
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and after some algebra and rearranging yields the transfer
function,

kb kg
+ s
Y(s) _ mmy (s b ) (17)
R(s) 4, (i " i)s3 " (ILS +]LS 4 L‘K)SZ 4 (M)S + Kowks
m m my M mymy nymy

To determine numerical values, we subtract the mass of
the four wheels from the total car mass of 1000 kg. and

divide by 4 to find that my =250kg. The wheel mass
was measured directly to be mj =20kg. Therefore, the

transfer function with the numerical values is

1.96x10%s + 2.6x107 (18)

Y(s) e
st +(529.2)57 + 5702052 +1.96x10%s + 2.6x107

R(s)

3.2 Design of Robust PI Controller for Vehicle
Suspension System

In order to apply the stability boundary locus technique
to the vehicle suspension system given in Eq. (18) one can

find k p and k; parameters that are given in Egs. (7)
and (8) as below.

_1.011232x10° »* -2.35908x10"* 0® - 6.76x10*  (19)
3.8416x10'% w? +6.76x10'4

kp

And

6 _.6 10 4
ki:—1.96x10 @% +9.8x10'%0 20)
3.8416x10'% 2 + 6.76x10%

The aim is to compute all the stabilizing values of k »

and f, which cause the characteristic polynomial of Eq.

(4) to be Hurwitz stable. For range of frequency, the
stability boundary locus can be easily computed. For
example, for w €[0,240], Ik ki, @) is shown in Fig. 4.

From this figure it can be seen that there are a few regions,
namely R1, R2, and R3, in which one needs to choose a
test point in order to find the stability region. For example,
choosing a test point within region R3 such as ky, =12

and k; =300, it can be calculated that the characteristic

polynomial has two right half plane complex roots that are
8.87 £ 216.44, therefore, the system is unstable for these
values of parameters. Thus, the region R3 is not a stable
region. It is found that the only stabilizing region is the

region denoted by R1. For example, for kp =5
and k; =100 , within region RI1, the characteristic

polynomial can be calculated as

A(s)=s> +5.292x10% 5% +5.702x10% 53 + @1)
1.176x107 52 +3.52x10% 5 + 2.6x10°

which is a stable polynomial. Fig. 5 demonstrates more

clearly R1 for all stabilizing values of kp and ;.

The proposed method is very fast and effective for
finding the stability region for the parameters of
suspension system. An efficient approach to reduce the
range of frequency, which needs to be grided, can be
obtained by using the Nyquist plot based approach of [16].
In this case, it is only necessary to find real values of @
that satisfy Im[G(s)]=0 where s= jow . Thus, the
frequency axis can be divided into a finite number of
intervals and then by testing each interval the stability
region can be computed. For the suspension system it can
be calculated that the only real frequency value that
satisfies Im[G(jw)]=0 is 223.6 rad/sec. Thus, the
frequency axis can be divided into two intervals such as
we(0,223.6) and w e (223.6,%) . For 2240 points within
@ €[0,240], I(kp,, k;, ) is revealed in Fig. 4 where it can
be seen that there are stabilizing values of £ » and k;

when @ e (0,223.6). -

To find all stabilizing PI controller parameters for the
suspension model, which satisfies the conditions that the

phase margin of the system is greater than 45° and the
gain margin is greater than 3 (9.54 db), first let us compute
the stability boundary locus. Using Egs. (9) and (10),

NACOS¢+ NBSII’I¢ (22)
kP - 12 2 14
— A(3.8416x10 “ @~ +6.76x10°")
b - oN gCos¢ — oN 4Sing (23)

L 4(3.8416x102 02 +6.76x10')

400 T T T T T T T T

] i L L

200f---m-peonegfeeeae be- s

) i | Stability Region H .
100f----- L A Fe---- R e At

ki

- ?a=@

I i ' ' ' ‘ ' '
I ' ' I ' ' ' )

1 R e T T T R LR E PR LT TR RS CEEERPE
i f ' ' v ' ' v
' ' ' ' |

D e Tt o

30 ; 1 : ; ; i : :
2 0 2z 4 & 8 0 12 14 16
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Fig. 4. Stability boundary locus of suspension system for
w €[0,240]
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Fig. 5. All stabilizing PI controllers

where,
N 4 =-1.011232x10° 0* +2.35908x10° 2 + 6.76x10'*
Np =1.96x10%0° —9.8x1010 °

For A=1and ¢=0, since Im[G(jw)]=0 for
®=223.6 rad/sec, it is only necessary to grid @
within @ € (0,223.6) . The stabilizing region is shown in
Fig. 5. To find all stabilizing PI controllers for which the

phase margin of the system is greater than 45°, it is
required to set A=1 and ¢ =45° in Eq. (22) and (23).

Using Eqs. (9) and (10), for these values of A and ¢
gives

o 196x10°0° ~1.011232610° 0* —9.8x10° " + 2.35008x10° 0 + 676210 (24)
» ~5.416656x10" * ~9.531 610"

and

4 2 1:96x10° 0 £1.011232410° »° ~9.8110" * ~2.35008610° 0 - 6.76x10"  (25)
’ ~5.416656:10” " —9.5316x10"

The range of @ needed for stabilization for this case
can be found from G(j @ )=45°. It can be calculated that

arg[G(jw)]=~135" for @ =101 rad/sec. The stability
boundary locus for ¢ =45° with @ varying within

@ €(0,101) is shown in Fig. 6. Similarly, setting ¢ =0
and A4 =3 inEgs. (22)and (23), it is found that

i - - 1011232 x10° w* +2.35908 x10° @* + 6.76 x10 26)
’ —5.416656 x10"” w? —9.5316 x10™
and
1.96x10°w°® - 9.8x10“ o * 27)

i

T T5.416656 x10 " @’ —9.5316 x10 "

The stability boundary locus for A=3 can be
obtained for @ <(0,223.6) as presented in Fig. 6. The
region obtained from the intersections of these regions
includes the stabilizing values of k » and k; which

make the phase margin of the system greater than 45°
and the gain margin greater than 3. For example, choosing
a point in the region such as k,=15 and k; =10, it can

be computed that the gain margin is equal to 7.7614  (17.8
dB) and the phase margin is equal to 67.8676. There is only
one point at which one can obtain the phase margin of the

system to be 45° and gain margin to be 3. This point is
the intersection point of the stability boundary locus for
A=3 and the stability boundary locus for ¢=45°. This

point corresponds to k,=0.0161 and k; =21.1404. The
step response of the system for different k, and k;

values are indicated in Fig. 7.

120

Stability boundary

oor or A=3

80+

B0 -

kp=0.0151
ki=21.1404

ki

ok Stability boundary!

Stability region for

ar $245 and A=3

0 =0236 |

20 L L L 1 L

Fig. 6. Stability region for ¢ >45° and 4 >3

Step Response

4
kp=1.3 and ki=40
kp=0.0161 and ki=21.1404

o

o
o

Amplitude
o
i

4 -

n t L i :
o & 0z [ 0.4 g5 08 @7 i 94 1

Time [sec)

Fig. 7. Step response of the system for different k, and

k; values in the stability region



140 Design of Robust PI Controller for Vehicle Suspension System

4. Robustness Analysis

Parametric uncertainty in real systems is an unavoidable
case and must be considered because nonlinear effects,
environmental conditions, tolerance of the equipments,
measurement faults etc. causes uncertainty. Thus, it is very
important to take parametric uncertainty into consideration.
It can be seen that the transfer function of the vehicle

suspension system is a function of &, b, kg, m; and

my [22]. All of these parameters can contain uncertainty.

Consequently, taking uncertainties of the parameters of the
transfer function of the vehicle suspension system into
account provides more realistic design. Kharitonov
theorem [20] is used for robust analysis of the system. In
case of uncertainties, the proposed method can be applied
to the control system as follows;

Consider a unity feedback system with a PI controller of
Eq. (2) and an interval plant

-1
NG mS” A g™ T 0 (28)
G(S)_ N n n-1
D(S) PnS + Pn_is e +p0

where q;€lg;.q;] , i=0,l,..,m and pje[&,;,-] ,
j=01,..,n. Let the Kharitonov polynomials associated
with N(s) and D(s) be respectively:

—, —
Nl(S)=q_o+q_1s+q2s +g35” +-eeee

e 2
N2(S)=q_()+q1S+q2s +qis3+ .....

29
N3(S)=E(;+ﬂs+q_2s2 +£S3 Feeennn
N4(s)=%+as+2s2 +q_3s3 I
And
D1(S)=@+ﬂs+p_252 +p_3s beerans
Dy(s)=po + 15 + pas” +pys 4 0

D3(S)=p0 +ﬂs+!—)—2-s2 +p3s3 RN

P 2
Dy(s)=pg + 1S+ pas +p_3s3 SRR

By taking all combinations of the N;(s) and D(s)

for i, j=1,2,3,4, the following sixteen Kharitonov plants
family can be obtained
N;(s)

Gk (S)ZG”(S)Zm €2))
J

where i, j=1,2,3,4. Define the set S(C(s)G(s)) which
contains all the values of the parameters of the controller
C(s) which stabilize G(s), then the set of all the

stabilizing values of parameters of a PI controller which
stabilize the interval plant of Eq. (28) can be written as

SCEIGE) = SCEGK () = o)
S(C(s)G11 (NN S(C(5)Ga(s5))+---S(C()Gaa (5))
where Gk (s) represents the sixteen Kharitonov plant

family which is given in Eq. (31) [21]. The transfer
function of Eq. (18) can be written in the form of an
interval plant as

bis+b
G(s) = bis b (33)
ags +azs” +azsT +apst+ay

where

by €[18055555 .56,40625000 ], by €[1361111 .11,3062500 ]
»ag €[18055555.56,40625000],a; €[1361111 .11,3062500 ],
a, €[47516 .66,71275] a; e[441,661.5] and a, =[L]1] .
Using the approach presented in Section 2, the stability
regions of the 16 Kharitonov plants shown in Fig, 8 are
obtained. From Fig. 8, it has been seen that the intersection
of the stability regions that stabilize the uncertain vehicle
suspension system is covered by the stability region of four
Kharitonov plants, namely Gi43(s), Gop3(s), Gaz(s) and
Ga4(s). Thus, all the stabilizing values of £, and £,

parameters can be computed from the intersection regions
of the four Kharitonov plants that are shown in Fig. 9. The
step responses of 16 Kharitonov plants for % =3 and

k; = 60 obtained from Fig. 9 are shown in Fig. 10.

ki

30

Fig. 8. Stability regions for sixteen Kharitonov plants
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Fig. 10. Step responses of 16 Kharitonov plants for
k,=3 and k; =60.

5. Conclusions

In this paper, a PI controller design method for the
vehicle suspension system has been presented. PI
controller parameters that guarantee stability of the system
are computed by using the stability boundary locus
approach. Since the vehicle suspension system includes
uncertainties, the stabilizing region of PI parameters for the
control of the plant with uncertain parameters has been
obtained. It has been revealed that the stability boundary
locus method can effectively be used for design of the PI
controller, which produces good results for the stability of
suspension systems.
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