Hydroelastic Analysis of Pontoon Type VLFS Considering the Location and Shape of OWC Chamber

SA-YOUNG HONG*, JO-HYUN KYOUNG* AND BYOUNG-WAN KIM*
*Offshore Plant Research Division, MOERI/KORDI, Daejeon, Korea

KEY WORDS: Hydroelastic analysis 유한요소법, OWC chamber 전동수소 공기챔버, Finite element method 유한요소법, Mode superposition method 모드증분법, Pontoon-type VLFS 푸트ونة형 초대형 구조물

ABSTRACT: A numerical investigation is made on the effects of the location and shape of the front wall of an OWC (Oscillating Water Column) chamber on the hydroelastic response of a VLFS. Most of the studies on the effects of an OWC chamber on the response of a VLFS have assumed the location of the OWC chamber to be at the front of the VLFS. In the present study, an OWC-chamber is introduced at an arbitrary position in relation to a VLFS to determine the influence of the location and shape of the OWC chamber on the hydroelastic response of the VLFS. A finite element method is adopted as a numerical scheme for the fluid domain, or the finite element method, combined with a mode superposition method, is applied in order to consider the change of mass and stiffness. The OWC chamber in a piecewise constant manner, or the facilitated inefficient analysis of the hydroelastic response of the VLFS, as well as the easy modeling of different shape and material properties for the structure. Reduction of hydroelastic response of the VLFS is investigated for various locations and front wall shapes of the OWC chamber.

1. 서 론

해양공간은 육상공간과 함께 인간의 주요 활동부대로서 전통적으로 해양운송 및 해양특화의 도로로서, 어업 및 양식을 위한 공간으로 이용되어 왔다. 인구의 증가에 따른 경제활동 증대와 이로 인해 해양의 공해, 도시의 발달 등은 향간, 공항, 저장시설 등 사회 기반시설의 확장 및 신설의 가속화 하여 지속적으로 높아지고 있으며, 공해 우회 기술의 부족은 초래해 왔다. 이에 대한 대응으로서 그동안 관광객에 대한 활발한 해양활동이 전개되었으며 그 결과 많은 용지가 확보된 반면 그에 비례하여 벌어진 생태계에 들어갈 수 없는 영향을 가지는 은행으로 인한 이익보다는 환경생태계 파괴로 인한 손해가 더 크다는 분석이 나오고 있는 실정이다. 이에 따라 전환적인 해양공간 이용에 대한 관심이 높아지고 있으며 그 중 하나가 초대형 부유식 구조물을 이용하여 경제적이고 전환적인 공간을 개발하는 것이다. 이에 대한 대표적 연구로서는 일본에서 1995년부터 2000년까지 검은 1km에 달하는 부유식 해양공항 설계용품을 설계 해석, 건조, 운송에 이르는 전 과정을 수행하여 초대형 부유식 해양구조물의 기술적 가능성을 입증한 메가프로젝트를 들 수 있다.

국내에서도 부유식 해양구조물에 관한 연구(신학경 등, 1993-1996), 교신저자 홍시영 : 대전광역시 유성구 장동 171
042-686-7521 sayhong@moeri.re.kr

매립과 비교할 때 초대형 구조물을 이용한 해양공간 이용의 장점은 구조물이 흔히 바다가 때문에 해저지형 및 수심의 영향을 거의 받지 않으므로 수심이 깊어질수록 경제적으로 유리하고 설치 위치 선택에 있어서도 자유도가 크며, 구조물의 하부가 개방되어 있어 물의 흐름이 자유로운 상태로 환경향이 작고, 구조물을 단위 부재 형태로 조립소에서 제작하여 현장에서 해상설립 시공을 하므로 공사가 짧고 건설공해가 없으므로, 아울러 확장평가가 용이한 점 등이 있다. 한편 부유식 구조물은 파장에 의한 동요를 하게 되는데 수 km 규모의 초대형 구조물은 일반 설계나 해양구조물에 비해 상대적으로 구조강성이 약한 수박에 있기 때문에 이를 고려하여 안전한 확장을 위해서는 구조적 안전성을 바탕으로 설계의 주로, 구조의 동적 헬레기 파동량 산업에 있어 구조물의 변형을 고려하는 소위 유한설계법이 필요하며 이러한 이유로 지금 실 현도 많이 보다 효과적이고 열악한 설계결과는 한 부유식 해양구조기법이 개발되어 왔으며, 유해영역 하 해석, 해양공간화된 관계에서 국유환수계개발, 경제요소법, 유한요소법 등의 구조물 해석하는 관계에서 보다 첫점을, 일반적으로 해석할 수 있는데 이에 대해서는 Kashiwagi(1999),
Watanabe et al. (2004)이 제계적으로 분석한 바 있다.

endon type 구조물의 경우는 기본적으로 만드는
또는 자연과 같이 자연된 해역을 가진 구조물로서 수심이 깊거나 자연적인 경계해역이 아닌 경우에는 약간 후 환경에서 해상의 높은 구조물로 가감시기 기한 진주장치가 필요한
대 태구 또는 케이스을 이용한 기존의 적절형 방대계는 기술적・경제적 문제뿐만 아니라 방대계 자체가 해양과 같이 해수의 유동을 방해하기 때문에 초대형 구조물 본래의 환경 진\화적 측면을 상쇄시키는 결과를 가져오게 된다. 따라서 초대형 구조물의 진환경 관리를 살리기 위해서는 구조물 주위의 해수유동을 방해하지 않는 방대계가 필요하다. 이러한 목적으로 고안된 다양한 개념의 부유식 방대계는 단독형과 구조물 임계형으로 나눌 수 있다. 단독형 방대계로서 Takagi et al. (2002),
Watanabe et al. (2003)은 몰수관 구조의 방대계를 제안하였으며

본 논문에서는 OWC 콤비의 위치 변화가 초대형 구조물의 응답감소에 미치는 영향을 고찰하였다. 유체역학은 유한요소법 으로 조사하였으며, 구조물 기동계에는 보도 지중진동을 사용하였으나 OWC 콤비의 환상 및 강성변화가 효과적으로 고려하고 OWC 콤비 연결구의 모델링을 용이하게 처리할 수 있도록 구조물을 특성변화를 부분 상수함으로 가정하여 유한요소법을 적용하였다.

2. 수학적 정식화

2.1 경계조건 문제

유동은 비회전성이라고 가정하며 축소 포렌델을 도입한다. 좌표계는 수수 직교좌표계이며 계산영역은 Fig. 1에 나타내었다.

\(h \)는 수심을 나타내며 입사자광 영역에서 정합계는 \(h \) 하류에서의 정합계는 \(h \)이며, 자유표면은 \(S_a \) 바닥면은 \(S_b \)이고 정 Hok 0.2의 각각 정합화 내부, 좌우 외부를 나타낸다. 구조물 표면은 \(\alpha \) 공기방전의 표면은 \(\alpha \) 구조물 전체 평균 영역은 \(S_{\text{ave}} \) \(h_{\text{ave}} \)은 공기방전 모델구(Orifice)의 단면적이다. 정합계면은 구조물의 선단(front end)과 후단(Rear end)에서 각각 \(L \)만큼 떨어져 있으며 구조물의 전체길이는 \(L \) 공기방전 내부분은 \(L \) 콤플렉스 두께는 \(c \)이고 \(L \)은 콤플렉스 외부구 구조물 선단과의 자격이다.

표면장력은 무시하며 시간조화운동을 가정하여 축소 포렌델을 다음과 같이 표시한다.

\[\Phi_j = Re\{\phi_j(x,y)e^{-iw_jt}\}, \quad j = 0,2 \] \(\omega \)는 입수과의 원진동수이며 \(\phi_j \)는 영역 \(\Omega_j (j=0,2) \)에서의 복소수의 포렌델이다. \(\phi_j \)는 각 영역에서 라플라스 방정식을 만족한다.

\[\nabla^2 \phi_j = 0 \quad \text{in} \quad \Omega_j, \quad j = 0,2 \] 또한 자유표면을 해상으로 그리고 정합계에서는 각각 다음의 경계조건을 만족한다(Hong and Kyoung, 2006).

\[\phi_j = 0 \quad \text{in} \quad S_{\text{Dj}}, \quad j = 0,2 \] \[\phi_j = 0 \quad \text{in} \quad S_{\text{Wa}}, \quad j = 0,2 \] \[\phi_j = 0 \quad \text{on} \quad J_p, \quad j = 1,2 \] \[\phi_{b0} + \phi_{b0} = 0 \quad \text{on} \quad J_p, \quad j = 1,2 \] \[K \text{은} \omega^2/g \text{으로 정의되는 무한수심에서의 파수이고} \text{g은 중력가속도입니다. 경계조건에는} \text{버추동적수소법이 사용되었다.} \text{본 방법의 장점은 경합영역에서의 방마계변수를 고려하여 정합(Explicit-function matching)을 통해 수치적으로 영합하게 수행함으로써 상대적으로 작은 수치색안면역을 가지고 높은 수준의 방마조건을 만족시키는 데 있다(Bai, 1977; Bai and Yeung, 1974).} \]
2.2 VLFS의 운동 방정식

OWC 챔버가 작동된 초대형 구조물의 동적 가동은 다음과 같이 Euler 보 방정식으로 이상화되었다.

\[m(x) \ddot{u} + \frac{d^2}{dx^2} \left(E(x)^2 \dddot{u} \right) = F \tag{6} \]

\(W\)는 수직변위이며, \(F\)는 힘계량방정식, \(m\)은 단위길이당 질량을, \(E\)는 임의에 의해 외력의 하나이다. 운동방정식을 해석하기 위해 모드진동방정식을 적용하면 수직변위 \(W\)는 다음과 같이 모드함수 \(u_j\)의 선형합으로 표시된다.

\[W = \sum_{j=1}^{N} \xi_j u_j \tag{7} \]

\(\xi_j\)는 \(j\) 모드의 모모성 특이법이며 \(N\)은 가동을 나타내기 위해 사용된 전체 모드수이다. 임의의 직교함수가 모드함수로 사용될 수 있으나, 본 연구에서는 양단 자유로 모드함수를 사용하였다. 시간조화운동을 가정한 초대형 구조물의 운동방정식은 다음과 같다.

\[\left(-\omega^2 M_j + K_{ij}\right) \xi_j = X_i \tag{8} \]

식에서 \(\omega \), \(M_j \), \(K_{ij} \)는 각 각 파주파수, 질량계수, 잠재력계수, 기동력 벡터를 나타낸다.

임의 위치에 설치된 OWC 챔버의 효과는 성형한 압력강하로 표시되는 변형된 자유변표준계수로 고려하였다(Hong and Kyoung, 2006). OWC 챔버 내의 압력강하는 다음과 같이 성형화하였다.

\[Re[p e^{-i\omega t}] = \delta \times Re[U e^{-i\omega t}] \tag{9} \]

챔버 내의 압력강하 성분을 고려하여 주어진 자유변표준계수를 정리하면 다음과 같다.

\[\phi_n - K\phi = \begin{cases} 0 & \text{on } F_c \\ \gamma U_n & \text{on } F_i \end{cases} \tag{10} \]

여기서 \(\gamma = i \frac{\delta \omega}{\omega} \)이다. 전체 수소 포텐셜 \(\phi \)는 방식 포텐셜 \(\phi_n = i \gamma \sum_j k_j u_j \)과 산란 포텐셜 \(\psi \)의 선형합으로 표시된다. 방식 문제와 산란문제에 대한 취중식은 다음과 같다(부록 A 참조).

\[\int_{D} \nabla \psi \cdot \nabla \phi d\Omega - K \int_{D} \left[1 + \frac{\gamma A_j}{A_j - \gamma A_j} \right] \psi \delta \phi d\Omega - K \int_{D} \delta \psi \phi d\Omega = \int_{D} \frac{\gamma A_j}{A_j - \gamma A_j} \delta \phi \psi d\Omega \tag{11} \]

\[\frac{A_j}{A_j - \gamma A_j} \int_{D} \delta \psi \phi d\Omega + \int_{S} \phi \delta \psi d\Omega = \int_{S} \psi \delta \phi d\Omega \]

\(A_j \)와 \(\lambda_j \)는 각각 OWC 챔버의 단면적과 공기𬳿트(Orifice)의 단면적을 나타낸다. \(Q_j \)는 \(j\)모드 운동으로 인한 공기유량이며 \(\gamma = i \delta \omega/\omega \), \(\rho \)는 유체밀도, \(g \)는 중력가속도, \(\delta \)는 산행 감쇠계수이다(Hong et al., 2004). 구조물의 물성가 각 구간에서 일정하다고 가정하여 유한요소법을 적용한 운동방정식은 다음과 같다. (부록 B 참조).

\[\left\{ \left(\rho g - m \omega^2 \right) M_j - \omega^2 a_j - i \omega b_j + K_j + P_j + \left[-\rho g m_j - (m - m) \omega^2 \right] \xi_j \right\} \xi_j = X_i \tag{13} \]

\(\xi_j \)는 \(j\) 모드의 모모성 특이법이며 \(N\)은 가동을 나타내기 위해 사용된 전체 모드수이다. 임의의 직교함수가 모드함수로 사용될 수 있으나, 본 연구에서는 양단 자유로 모드함수를 사용하였다. 시간조화운동을 가정한 초대형 구조물의 운동방정식은 다음과 같다.

\[\left(-\omega^2 M_j + K_{ij}\right) \xi_j = X_i \tag{8} \]

\(\omega \), \(M_j \), \(K_{ij} \)는 각 각 파주파수, 질량계수, 잠재력계수, 기동력 벡터를 나타낸다.

임의 위치에 설치된 OWC 챔버의 효과는 성형한 압력강하로 표시되는 변형된 자유변표준계수로 고려하였다(Hong and Kyoung, 2006). OWC 챔버 내의 압력강하는 다음과 같이 성형화하였다.

\[Re[p e^{-i\omega t}] = \delta \times Re[U e^{-i\omega t}] \tag{9} \]

채머 내의 압력강하 성분을 고려하여 주어진 자유변표준계수를 정리하면 다음과 같다.

\[\phi_n - K\phi = \begin{cases} 0 & \text{on } F_c \\ \gamma U_n & \text{on } F_i \end{cases} \tag{10} \]

여기서 \(\gamma = i \frac{\delta \omega}{\omega} \)이다. 전체 수소 포텐셜 \(\phi \)는 방식 포텐셜 \(\phi_n = \omega \sum_j k_j u_j \)과 산란 포텐셜 \(\psi \)의 선형합으로 표시된다. 방식 문제와 산란문제에 대한 취중식은 다음과 같다(부록 A 참조).

\[\int_{D} \nabla \psi \cdot \nabla \phi d\Omega - K \int_{D} \left[1 + \frac{\gamma A_j}{A_j - \gamma A_j} \right] \psi \delta \phi d\Omega - K \int_{D} \delta \psi \phi d\Omega = \int_{D} \frac{\gamma A_j}{A_j - \gamma A_j} \delta \phi \psi d\Omega \tag{11} \]

\[\frac{A_j}{A_j - \gamma A_j} \int_{D} \delta \psi \phi d\Omega + \int_{S} \phi \delta \psi d\Omega = \int_{S} \psi \delta \phi d\Omega \]

\(A_j \)와 \(\lambda_j \)는 각각 OWC 챔버의 단면적과 공기 CType(Orifice)의 단면적을 나타낸다. \(Q_j \)는 \(j\)모드 운동으로 인한 공기유량이며 \(\gamma = i \delta \omega/\omega \), \(\rho \)는 유체밀도, \(g \)는 중력가속도, \(\delta \)는 산행 감쇠계수이다(Hong et al., 2004). 구조물의 물성가 각 구간에서 일정하다고 가정하여 유한요소법을 적용한 운동방정식은 다음과 같다. (부록 B 참조).

\[\left\{ \left(\rho g - m \omega^2 \right) M_j - \omega^2 a_j - i \omega b_j + K_j + P_j + \left[-\rho g m_j - (m - m) \omega^2 \right] \xi_j \right\} \xi_j = X_i \tag{13} \]
공기점버 위치에 따른 본문형 초대형 구조물 유단성응답 해석

Fig. 2 Definition of integration intervals and bending rigidities

<table>
<thead>
<tr>
<th>Table 1 Characteristic dimensions for computations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ad</td>
</tr>
<tr>
<td>Lc</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>a</td>
</tr>
</tbody>
</table>

El/Unit length 7.5E10 N·m²/m

Fig. 3 Hydroelastic responses by varying the linear damping coefficient δ with Lxa = Lc when λ/L = 0.156

공기점버효과를 고려한 파동 기판력을 다음과 같다.

\[X_i = \frac{\delta}{A_d} \int_{F_i} u_i dS + \int_{F_o} (\phi_i + \phi_o) u_i dS \] (21)

\[P_o = \frac{\delta}{A_d} \left[\int_{F_o} (Q_i - Q_o) \right] \int_{F_i} u_i dS \] (22)

3. 수치계산 및 고찰

OWC 젤버의 위치와 협상 효과를 살펴기 위해 Maeda et al. (2001)의 모델과 동일한 구조물에 대해 계산을 수행하였다. 수심은 50m로 하였으며 젤버는 λ/L = 0.156, 0.313의 두 경우를 살펴보았다. \(\lambda \)는 파장과 나타내며 기타 주요 계산은 Table 1에 정리하였다(Fig. 1 참조).

공기점버 방파계는 파주기에 따라 최적의 감쇠계수가 결정되며 본 모델의 경우 방파계가 파도 동안에 설치된 경우에 파장비 λ/L = 0.156와 0.313에 대해 각각 δ = 200 와 δ = 400의 최적값으로 주어진 바 있다(Hong and Kyoung, 2006).

Fig. 3은 OWC 젤버가 공기점버 폭 후방에 위치한 경우 λ/L = 0.156일 때 최적 감쇠비가 젤버의 위치변화로 인한 간섭효과로 인해 달라지는 것을 보여주고 있으며 계산된 경우가(δ = 0) 최적의 효과를 갖는 것으로 나타났다. 횡축은 구조물의 길이 분포를 나타낸 것으로 L/2로 무차원화 하여 1에서 1의 값을 갖도록 하였다. \(\lambda \)는 유단성 운동변위를 임상과 전폭으로 무차원화하여 점대값을 취한 것이다. 이 때 최적효과 반전의 기준은 공기점버 방파계 후방에서의 유단성응답의 크기이다. 이 결과는 공기점버의 위치변화에 따라 최적의 성능을 나타내는 공기점버 감쇠계수를 크게 변할을 보여준다. Fig. 4는 λ/L = 0.313일 때 공기점버 위치가 공기점버 폭 2배 후방에 위치한 경우로서 공기점버 감쇠계수 변화에 따라 성능이 크게 달라지고 있는데 δ = 200일 때 최적의 효과를 갖는 것으로 나타났다. 이는 공기점버의 최적감쇠계수 효과는 기본적으로 파장과 관계가 있지만 위치변화에 따라 그 최적값이 변화하는 것으로 실제 공기점버 방파계 운용 시에는 이러한 특성변화를 고려할 수 있도록 하는 시스템의 고안이 필요함을 의미한다.

Fig. 4 Hydroelastic responses by varying the linear damping coefficient δ with Lxa = 2Lc when λ/L = 0.313

Fig. 5 Hydroelastic responses for various OWC chamber locations (δ = 200, λ/L = 0.313)

Fig. 6 Hydroelastic responses for various OWC chamber locations (δ = 400, λ/L = 0.313)
Fig. 5와 Fig. 6은 $\lambda/L=0.313$일 때 주어진 δ 값에서 공기 챔버의 위치 변화에 대한 유압감소효과를 보여주고 있다. Fig. 5는 $\delta=200$인 경우로서 공기챔버의 위치가 공기챔버 폭만을 후방에 위치한 경우가 가장 우수한 성능을 나타내지만 위치 변화에 따른 성능변화의 폭은 그리 크지 않은 것으로 나타났다. Fig. 6은 $\delta=400$인 경우로서 공기챔버 위치가 공기챔버 폭만을 후방에 위치한 경우가 가장 좋은 성능을 보이고 있으며 이 경우에서는 위치변화에 따른 성능 차이가 크게 나타나고 있음을 알 수 있다. 이 결과는 최적 공기챔버 감소계수를 적용한 경우로서 공기챔버 내의 전동수주의 공진유동에 의한 에너지 손실에 따른 것으로 공질유압에서 감소계수의 영향이 크게 나타난 것이 물리적으로 타당하다고 사료된다. 최적 감소계수 상태에서 수심 50m의 연안에서는 비교적 장애인 $\lambda/L=0.313$(과주기 16.3m)에서 구조물의 4/5L 이상에서 유탄성 응답이 70%이상 감소하는 우수한 효과를 나타내었는데 이는 공기 챔버의 위치를 바꾸면서 특히 장과 구간에서 부가적인 유탄성 응답 감소효과를 가져올 수 있음을 보여준다.

Fig. 7은 OWC 챔버 전면부의 구조물의 홀수변화, 강성변화에 의한 효과를 나타내고 있다.

결과에서 보면 OWC 챔버 전면부 구조물의 홀수 변화로 인한 효과는 크지 않은 것으로 나타났다. 이는 OWC 챔버 전면부의 형상보다는 OWC 챔버의 위치변화에 따른 효과가 더 큼을 보여주는 것이다.

한편, 계산된 OWC 챔버 일체형 VLFS에 대한 모형시험 결과(김병안 등, 2007)와 본 논문에서 계산된 수치계산결과를 비교하였다. 모형시험에 사용된 구조물은 길이가 500m인 VLFS로서 홀수는 1.5m이며 단위 폭 횡단도는 3.9665×10^{6}N-m를 취하였다. 또한, 수심은 50m, 챔버의 폭 L_c는 20m, 챔버 벽의 홀수 a는 6m, 챔버의 두께 c는 6.1m, 전면부 외의 길이 L_{ax}는 30m를 택하였다. 입 사과의 전형성을 유지하기 위해 파장 대비 폭의 비율 1/50이 되도록 하였다. 모형시험은 상사벽을 1/100로 백하였으며 2차원 수조에서 수행되었다. 실험은 세 가지 모델에 대하여 수행되었으며, 모형시험에서 사용한 대략적인 모델의 모양을 Fig. 8에 도시하였다.

Fig. 9에서는 단단한벽(Adw)과 공기챔버의 단면적(Adwchamber)의 비가 0.07인 경우에 모형시험에서 계측한 공질 응력의 수치계산결과와 비교한 것이다. 수치해석결과와 모형시험결과가 잘 일치하였으며, 전면부에 밀을 부착한 경우(Case 3)에서 가장 낮은 응력을 보였다.
4. 결론

OWC 채색 방과제가 초대형 구조물에 일체형으로 장착된 경우 OWC 채색의 위치와 전면부 구조물의 형상 변화에 따른 유턴성을 영향의 특성을 수치적으로 관찰하였다. 공기정복의 위치로 인한 구조물의 강성, 점착부등의 변화를 효과적으로 취급하기 위해 유한요소법을 사용하였다. 본 논문에서 사용한 수치해석방법의 결과는 모형실험을 통해 검증하였으며 비교결과 매우 우수한 일치도를 나타내었다.

수치실증으로부터 OWC 채색 방과제의 위치변화에 따라 방과제 부착으로 인한 소파성능의 감감하게 변화하는 결과를 얻었으며 기존의 개념을 달리 OWC 채색을 구조물의 선수부에서 일정거리 후방으로 이동시킬 경우 복도 구조물, 공기정복의 상호작용으로 인해 상당한 장파일 경우에도 OWC 채색 방과제 일체형 초대형 구조물의 유턴성 응답이 70% 이상 감소될 수 있는 것으로 나타났다.

후기

본 연구는 해양수산부의 지원으로 수행된 “초대형 부유식 해상구조물 기술개발”연구결과 중 일부용을 빌립니다.

부록 A. 방사 포텐셜 및 산란과 포텐셜 해석법

OWC의 역학을 통합하는 유턴의 속도는 다음과 같이 산란과에 의한 성분 (U_a^b)과 방사에 의한 성분 (U_a^p)으로 분리할 수 있다.

\[U_a = U_a^b + U_a^p \]
\[U_a^b = U_a^b + U_a^p \]
\[\frac{\partial \phi_j}{\partial t} - K\phi_j = \gamma \frac{A_d}{A_d} (Q_a - Q_d) \quad \text{on } F_i \]

각각의 성분은 자유표면의 운동성분 및 구조물의 운동에 의해 다음과 같이 나타날 수 있다. 여기서 ϕ_b는 입사과 포텐셜이며, ϕ_p는 산란과 포텐셜을 의미한다.

\[\int_{F_i}^{\gamma \frac{A_d}{A_d} (Q_a - Q_d)} dS = \int_{F_i}^{\gamma \frac{A_d}{A_d} (Q_a - Q_d)} dS \]
\[Q_j = \frac{1}{1 - \frac{A_d}{A_d}} \left(-Q_a \frac{A_d}{A_d} + \int_{F_i}^{\gamma \frac{A_d}{A_d} (Q_a - Q_d)} dS \right) \]

여기서 Q_j는 $\frac{\partial \phi_j}{\partial t} + K\phi_j = \gamma \frac{A_d}{A_d} (Q_a - Q_d)$ 이다. 위 식은 자유표면식에 대입하여 정리하면 다음과 같다.
주어진 자유표면조건식을 적용하여 범함수에 대입하고 정류치를 구하면 다음과 같이 정리된다.

\[\int_{\Omega} \nabla \psi \cdot \nabla \psi d\Omega - K \int_{\Gamma} \left(1 + \frac{\gamma A_e}{A_d - \gamma A_e} \right) \psi \psi dS = \frac{\gamma Q_{ij}}{A_d - \gamma A_e} \int_{\Gamma} \psi dS + \int_{S_p} \phi dS \]

(A.10)

한편, 산란과 문제에서는 OWC 챗버 내에서 식 (10)과 식 (A.3)에 의해 다음과 같은 자유표면계 조건을 갖는다. 이때 포멘트 \(\psi \)는 입사와 포멘트 \(\phi \)와 산란의 일체를 나타낸다.

\[\frac{\partial \psi}{\partial n} = K \psi \psi \quad Q = \int_{\Gamma} \frac{\partial \psi}{\partial n} dS \]

(A.11)

위 식을 챗버 내의 자유표면에서 적용한 후 유효 Q를 구하면 다음과 같다.

\[Q = \frac{1}{1 - \frac{A_e}{A_d}} \int_{\Gamma} K \psi dS \]

(A.12)

이 식을 자유표면식에 대입한 후 정리하면 식 (A.11)은 다음과 같다.

\[\frac{\partial \psi}{\partial n} = K \psi \psi + \frac{\gamma}{A_d - \gamma A_e} \int_{\Gamma} K \psi dS \]

(A.13)

마찬가지로 위식을 범함수에 대입하고 정류치를 구하면 다음과 같다.

\[\int_{\Omega} \nabla \psi \cdot \nabla \psi d\Omega - K \int_{\Gamma} \left(1 + \frac{\gamma A_e}{A_d - \gamma A_e} \right) \psi \psi dS = \frac{\gamma Q_{ij}}{A_d - \gamma A_e} \int_{\Gamma} \psi dS + \int_{S_p} \phi dS \]

(A.14)

부록 B. 운동방정식

단순 보로 이동된 부유 구조물의 정적방향상태에서의 운동방정식은 다음과 같이 주어진다.

\[\{(\rho g - ma^2)M_{ij} + K_{ij}\} \xi_j = X_i \]

(B.1)

부식포텐셜 해석 후, 과달검속계수와 부가질량장치

\(-\varphi_0 a_{ij} - i \omega b_{ij}\)를 대입하고, OWC채널 내부의 압력에 의한 복원력 \(P_{ij} \)를 대입하면 다음과 같다.

\[\{(\rho g - ma^2)M_{ij} - \omega^2 a_{ij} - i \omega b_{ij} + K_{ij} + P_{ij}\} \xi_j = X_i \]

(B.2)

참고문헌

신정호 등 (1993-1996). 부유식 해양조문에 관한 연구, 울산대학교 보고서

홍성영 등 (1999-2007). 초대형 부유식 해상구조물 기술개발, 한국해양연구원 보고서

Maeda, H., Rheem, C-K, Washio, Y., Osawa, H., Nagata, Y.,
Effects of Hydroelastic Responses on a Very Large
Floating Structure with Wave Energy Absorption Devices
using OWC System", Proc. 20th Offshore Mechanics and
Arctic Eng.
Anti-motion Device for a Very Large Floating Structure",
Marine Structure 13, pp 421-436.
of a Submerged Plate Toward Wave Exciting Forces
Acting on a Very Large Floating Structure", Proc. 12th
ISOPE Conference, Kitakyushu, pp 391-398.
"Hydroelastic Analysis of Pontoon-type VLFS : A
Literature Survey", Engineering structures, Vol 26, pp
245-256.
Watanabe, E., Utsunomiya, T., Kuramoto, M., Ohta, H., Tori,
T. and Hayashi, N. (2003). "Wave Response Analysis of
VLFS with an Attached Submerged Plate", IJOPE, Vol
13, No. 3, pp 190 -197.

2007년 11월 12일 원고 접수
2008년 1월 7일 최종 수정본 채택