DOI QR코드

DOI QR Code

COINCIDENCE POINTS OF WEAKLY COMPATIBLE MAPPINGS

  • Song, Yisheng (COLLEGE OF MATHEMATICS AND INFORMATION SCIENCE HENAN NORMAL UNIVERSITY)
  • Published : 2008.11.30

Abstract

We present coincidence points and common fixed point results for (f, g)-contractive mapping and (f, g)-nonexpansive mappings. Our results generalize and complement various known results existing in the literature.

References

  1. M. A. Al-Thagafi and N. Shahzad, Noncommuting selfmaps and invariant approximations, Nonlinear Anal. 64 (2006), no. 12, 2778-2786 https://doi.org/10.1016/j.na.2005.09.015
  2. G. Jungck, Common fixed points for commuting and compatible maps on compacta, Proc. Amer. Math. Soc. 103 (1988), no. 3, 977-983 https://doi.org/10.1090/S0002-9939-1988-0947693-2
  3. G. Jungck, Coincidence and fixed points for compatible and relatively nonexpansive maps, Internat. J. Math. Math. Sci. 16 (1993), no. 1, 95-100. https://doi.org/10.1155/S0161171293000110
  4. G. Jungck and S. Sessa, Fixed point theorems in best approximation theory, Math. Japon. 42 (1995), no. 2, 249-252
  5. R. E. Megginson, An Introduction to Banach Space Theory, Graduate Texts in Mathematics, 183. Springer-Verlag, New York, 1998
  6. R. P. Pant, Common fixed points of noncommuting mappings, J. Math. Anal. Appl. 188 (1994), no. 2, 436-440 https://doi.org/10.1006/jmaa.1994.1437
  7. N. Shahzad, On R-subcommuting maps and best approximations in Banach spaces, Tamkang J. Math. 32 (2001), no. 1, 51-53
  8. N. Shahzad, Invariant approximations and R-subweakly commuting maps, J. Math. Anal. Appl. 257 (2001), no. 1, 39-45 https://doi.org/10.1006/jmaa.2000.7274
  9. N. Shahzad, Invariant approximations, generalized l-contractions, and R-subweakly commuting maps, Fixed Point Theory Appl. (2005), no. 1, 79-86. https://doi.org/10.1155/FPTA.2005.79
  10. N. Shahzad, Noncommuting maps and best approximations, Rad. Mat. 10 (2000/01), no. 1, 77-83.
  11. S. P. Singh, B. Watson, and P. Srivastava, Fixed Point Theory and Best Approximation: The KKM-map Principle, Kluwer Academic Publishers, Dordrecht, 1997

Cited by

  1. The existence and uniqueness of eigenvalues for monotone homogeneous mapping pairs vol.75, pp.13, 2012, https://doi.org/10.1016/j.na.2012.04.045