• Published : 2008.11.30


Let R be a prime ring of characteristic different from 2, C the extended centroid of R, and $\delta$ a generalized derivations of R. If [[$\delta(x)$, x], $\delta(x)$] = 0 for all $x\;{\in}\;R$ then either R is commutative or $\delta(x)\;=\;ax$ for all $x\;{\in}\;R$ and some $a\;{\in}\;C$. We also obtain some related result in case R is a Banach algebra and $\delta$ is either continuous or spectrally bounded.


  1. K. I. Beidar, Rings with generalized identities, Moscow Univ. Math. Bull. 33 (1978), no. 4, 53-58
  2. K. I. Beidar, W. S. Martindale III, and V. Mikhalev, Rings with Generalized Identities, Monographs and Textbooks in Pure and Applied Mathematics, 196. Marcel Dekker, Inc., New York, 1996
  3. M. Bresar and M. Mathieu, Derivations mapping into the radical. III, J. Funct. Anal. 133 (1995), no. 1, 21-29
  4. C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988), no. 3, 723-728
  5. T. S. Erickson, W. S. Martindale III, and J. M. Osborn, Prime nonassociative algebras, Pacific J. Math. 60 (1975), no. 1, 49-63
  6. C. Faith and Y. Utumi, On a new proof of Litoff's theorem, Acta Math. Acad. Sci. Hungar 14 (1963), 369-371
  7. B. Hvala, Generalized derivations in rings, Comm. Algebra 26 (1998), no. 4, 1147-1166
  8. N. Jacobson, PI-algebras, Lecture Notes in Mathematics, Vol. 441. Springer-Verlag, Berlin-New York, 1975
  9. N. Jacobson, Structure of Rings, American Mathematical Society Colloquium Publications, Vol. 37. Revised edition American Mathematical Society, Providence, R.I. 1964
  10. B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 (1968), 1067-1073
  11. V. K. Kharchenko, Differential identities of prime rings, Algebra and Logic 17 (1978), no. 2, 155-168
  12. B.-D. Kim, Derivations of semiprime rings and noncommutative Banach algebras, Commun. Korean Math. Soc. 17 (2002), no. 4, 607-618
  13. T. K. Lee, Generalized derivations of left faithful rings, Comm. Algebra 27 (1999), no. 8, 4057-4073
  14. T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1992), no. 1, 27-38
  15. W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584
  16. M. Mathieu and G. J. Murphy, Derivations mapping into the radical, Arch. Math. (Basel) 57 (1991), no. 5, 469-474
  17. M. Mathieu and V. Runde, Derivations mapping into the radical. II, Bull. London Math. Soc. 24 (1992), no. 5, 485-487
  18. K.-H. Park, On derivations in noncommutative semiprime rings and Banach algebras, Bull. Korean Math. Soc. 42 (2005), no. 4, 671-678
  19. E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100
  20. A. M. Sinclair, Continuous derivations on Banach algebras, Proc. Amer. Math. Soc. 20 (1969), 166-170
  21. I. M. Singer and J. Werner, Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260-264
  22. M. P. Thomas, The image of a derivation is contained in the radical, Ann. of Math. (2) 128 (1988), no. 3, 435-460
  23. J. Vukman, A result concerning derivations in noncommutative Banach algebras, Glas. Mat. Ser. III 26(46) (1991), no. 1-2, 83-88

Cited by

  1. Generalized derivations with power values in rings and Banach algebras vol.21, pp.2, 2013,
  2. On prime and semiprime rings with generalized derivations and non-commutative Banach algebras vol.126, pp.3, 2016,
  3. Engel type identities with generalized derivations in prime rings 2017,
  4. Generalized Jordan Derivations on Semiprime Rings and Its Applications in Range Inclusion Problems vol.8, pp.3, 2011,
  5. Generalized Derivations of Rings and Banach Algebras vol.41, pp.3, 2013,
  6. On Lie Ideals with Generalized Derivations and Non-commutative Banach Algebras vol.40, pp.2, 2017,
  7. Banach algebra with generalized derivations 2016,
  9. On commutativity of rings with generalized derivations vol.24, pp.2, 2016,
  10. A result on generalized derivations on right ideals of prime rings vol.64, pp.2, 2012,
  11. Generalized derivations on some convolution algebras vol.92, pp.2, 2018,