DOI QR코드

DOI QR Code

ADAPTIVE MESH REFINEMENT FOR WEIGHTED ESSENTIALLY NON-OSCILLATORY SCHEMES

  • Published : 2008.11.30

Abstract

In this paper, we describe the application procedure of the adaptive mesh refinement (AMR) for the weighted essentially non-oscillatory schemes (WENO), and observe the effects of the derived algorithm when problems have piecewise smooth solutions containing discontinuities. We find numerically that the dissipation of the WENO scheme can be lessened by the implementation of AMR while the accuracy is maintained. We deduce from the experiments that the AMR-implemented WENO scheme captures shocks more efficiently than the WENO method using uniform grids.

References

  1. G. Jiang and C. W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126 (1996), no. 1, 202-228 https://doi.org/10.1006/jcph.1996.0130
  2. D. Kim and J. H. Kwon, A high-order accurate hybrid scheme using a central flux scheme and a WENO scheme for compressible flowfield analysis, J. Comput. Phys. 210 (2005), no. 2, 554-583 https://doi.org/10.1016/j.jcp.2005.04.023
  3. C. W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, NASA/CR-97-206253, ICASE Report No. 97-65, 1997
  4. D. Balsara and C. W. Shu, Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, J. Comput. Phys. 160 (2000), no. 2, 405-452 https://doi.org/10.1006/jcph.2000.6443
  5. J. Shi, C. Hu, and C. W. Shu, A technique of treating negative weights in weno schemes, J. Comput. Phys. 175, (2002), 108-127 https://doi.org/10.1006/jcph.2001.6892
  6. R. Wang, H. Feng, and R. J. Spiteri, Observations on the fifth-order WENO method with non-uniform meshes, Appl. Math. Comput. 196 (2008), no. 1, 433-447 https://doi.org/10.1016/j.amc.2007.06.024
  7. M. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys. 53 (1984), no. 3, 484-512 https://doi.org/10.1016/0021-9991(84)90073-1
  8. M. Berger and P. Colella, Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys. 82 (1989), 67-84 https://doi.org/10.1016/0021-9991(89)90035-1
  9. J. Glimm, H. Kim, D. Sharp, and T. Wallstrom, A stochastic analysis of the scale up problem for flow in porous media, Comput. Appl. Math. 17 (1998), no. 1, 67-79
  10. C. W. Shu and S. Osher, Efficient implementation of essentially nonoscillatory shockcapturing schemes. II., J. Comput. Phys. 83 (1989), no. 1, 32-78 https://doi.org/10.1016/0021-9991(89)90222-2
  11. R. Deiterding, Parallel adaptive simulation of multi-dimensional detonation structures, Ph. D. thesis, Brandenburgische Technische Universitat Cottbus, 2003
  12. M. Berger and I. Rigoutsos, An algorithm for point clustering and grid generation, IEEE Trans. on System. 21 (1991), no. 5, 1278-1286 https://doi.org/10.1109/21.120081
  13. S. Li and J. M. Hyman, Adaptive mesh refinement for finite difference weno schemes, Technical Report LA-UR-03-8927, Los Alamos National Lab, 2003
  14. J. M. Hyman and S. Li, Interactive and dynamic control of adaptive mesh refinement with nested hierarchical grids, Technical Report LA-UR-98-5462, Los Alamos National Lab, 1998
  15. M. J. Berger and R. J. Leveque, Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems, SIAM J. Numer. Anal. 35 (1998), no. 6, 2298-2316 https://doi.org/10.1137/S0036142997315974
  16. R. J. LeVeque, Numerical Methods for Conservation Laws, Birkhauser, 1992

Cited by

  1. A novel optimization technique for explicit finite-difference schemes with application to AeroAcoustics vol.78, pp.4, 2015, https://doi.org/10.1002/fld.4010
  2. On the effective accuracy of spectral-like optimized finite-difference schemes for computational aeroacoustics vol.263, 2014, https://doi.org/10.1016/j.jcp.2014.01.024
  3. A Moving Mesh WENO Method for One-Dimensional Conservation Laws vol.34, pp.4, 2012, https://doi.org/10.1137/110856381
  4. An adaptive version of Glimm's scheme vol.30, pp.2, 2010, https://doi.org/10.1016/S0252-9602(10)60057-4