DOI QR코드

DOI QR Code

WEIERSTRASS POINTS ON Γ0(p) AND ITS APPLICATION

Choi, Do-Hoon

  • Published : 2008.10.31

Abstract

In this note, we study arithmetic properties for the exponents of modular forms on ${\Gamma}_0(p)$ for primes p. Our aim is to refine the result of [4] by using the geometric property of the modular curve of ${\Gamma}_0(p)$.

Keywords

modular forms;one variable;congruences for modular forms

References

  1. S. Ahlgren, The theta-operator and the divisors of modular forms on genus zero subgroups, Math. Res. Lett. 10 (2003), 787-798 https://doi.org/10.4310/MRL.2003.v10.n6.a6
  2. S. Ahlgren and K. Ono Weierstrass points on $X_{0}$(p) and supersingular j-invariants, Math. Ann. 325 (2003), no. 2, 355-368 https://doi.org/10.1007/s00208-002-0390-9
  3. J. Bruinier, W. Kohnen, and K. Ono, The arithmetic of the values of modular functions and the divisors of modular forms, Compos. Math. 140 (2004), 552-566 https://doi.org/10.1112/S0010437X03000721
  4. D. Choi, On values of a modular form on $\Gamma_{0}$(N), Acta Arith. 121 (2006), no. 4, 299-311 https://doi.org/10.4064/aa121-4-1
  5. S. Choi, The values of modular functions and modular forms, Canad. Math. Bull. 49 (2006), no. 4, 526-535 https://doi.org/10.4153/CMB-2006-050-4
  6. W. Eholzer and N.-P. Skoruppa, Product expansions of conformal characters, Phys. Lett. B 388 (1996), no. 1, 82-89 https://doi.org/10.1016/0370-2693(96)01154-9
  7. H. M. Farkas and I. Kra, Riemann Surfaces, Springer-Verlag, New York, 1992
  8. A. Ogg, On the Weierstrass points of $X_{0}$(N), Illinois J. Math. 22 (1978), no. 1, 31-35
  9. J.-P. Serre, Divisibilite des coefficients des formes modulaires de poids entier, C. R. Acad. Sci. Paris Ser. A 279 (1974), 679-682