DOI QR코드

DOI QR Code

Study on the Void Growth and Coalescence in F.C.C. Single Crystals

F.C.C. 단결정재에서 기공의 성장과 합체에 관한 연구

  • 하상렬 (포항공과대학교 대학원) ;
  • 김기태 (포항공과대학교 기계공학과)
  • Published : 2008.04.01

Abstract

In this study, we investigate the deformation behavior of F.C.C. single crystals containing micro- or submicron-sized voids by using three dimensional finite element methods. The locally homogeneous constitutive model for the rate-dependent crystal plasticity is integrated based on the backward Euler method and implemented into a finite element program (ABAQUS) by means of user-defined subroutine (UMAT). The unit cell analysis has been investigated to study the effect of stress triaxiality and crystallographic orientations on the growth and coalescence of voids in F.C.C. single crystals.

Keywords

Crystal Plasticity;Void Growth and Coalescence;Crystallographic Orientation;Stress Triaxiality

References

  1. Freund, L.B. and Suresh, S., 2003, Thin Film Materials, Cambridge University Press
  2. Kysar, J.W., Gan, Y.X. and Arzuza, G.M., 2005, 'Cylindrical Void in a Rigid-Ideally Plastic Single Crystal. Part I: Anisotropic Slip Line Theory Solution for Face-Centered Cubic Crystals,' Int. J. Plasticity, Vol. 21, pp. 1461-1657 https://doi.org/10.1016/j.ijplas.2004.07.007
  3. Gan, Y.X., Kysar, J.W. and Morse, T.L., 2006, 'Cylindrical Void in a Rigid-Ideally Plastic Single Crystal II: Experiments and Simulations,' Int. J. Plasticity, Vol. 22, pp. 39-72 https://doi.org/10.1016/j.ijplas.2005.01.009
  4. Rice, J.R. and Tracey, D.M., 1969, 'On the Ductile Enlargement of Voids in Triaxial Stress Fields,' J. Mech. Phys. Solids, Vol. 17, pp. 201-217 https://doi.org/10.1016/0022-5096(69)90033-7
  5. Koplik, J. and Needleman, A., 1988, 'Void Growth and Coalescence in Porous Plastic Solids,' Int. J. Solids Struct., Vol. 24, No. 8, pp. 835-853 https://doi.org/10.1016/0020-7683(88)90051-0
  6. Kuna, M. and Sun, D.Z., 1996, 'Three-Dimensional Cell Model Analyses of Void Growth in Ductile Materials,' Int. J. Fract., Vol. 81, pp. 235-258 https://doi.org/10.1007/BF00039573
  7. Pardoen, T. and Hutchinson, J., 2000, 'An Extended Model for Void Growth and Coalescence,' J. Mech. Phys. Solids, Vol. 48, pp. 2467-2512 https://doi.org/10.1016/S0022-5096(00)00019-3
  8. O'Regan, T.L., Quinn, D.F., Howe, M.A. and McHugh, P.E., 1997, 'Void Growth Simulations in Single Crystals,' Comput. Mech., Vol. 20, pp. 115-121 https://doi.org/10.1007/s004660050226
  9. Qi, W. and Bertram, A., 1999, 'Anistropic Continuum Damage Modeling for Single Crystals at High Temperature,' Int. J. Plasticity, Vol. 15, pp. 1197-1215 https://doi.org/10.1016/S0749-6419(99)00035-2
  10. Orsini, V.C. and Zikry, M.A., 2001, 'Void Growth and Interaction in Crystalline Materials,' Int. J. Plasticity, Vol. 17, pp. 1393-1417 https://doi.org/10.1016/S0749-6419(00)00091-7
  11. Schacht, T., Untermann, N. and Steck, E., 2003, 'The Influence of Crystallographic Orientation on the Deformation Behaviour of Single Crystals Containing Microvoids,' Int. J. Plasticity, Vol. 19, pp. 1605-1626 https://doi.org/10.1016/S0749-6419(02)00038-4
  12. Horstemeyer, M.F. and Ramaswamy, S., 2000, 'On Factors Affecting Localization and Void Growth in Ductile Metals: a Parametric Study,' Int. J. Damage Mech., Vol. 9, pp. 5-28 https://doi.org/10.1177/105678950000900102
  13. Hibbitt, Karlsson, Sorensen, 2006, Abaqus User's Manual, version 6.5
  14. Hill, R. and Rice, J.R., 1972, 'Constitutive Analysis of Elastic.Plastic Crystals at Arbitrary Strain,' J. Mech. Phys. Solids, Vol. 20, pp. 401-413 https://doi.org/10.1016/0022-5096(72)90017-8
  15. Asaro, R.J., 1983. Crystal Plasticity, J. Appl. Mech., Vol. 50, pp. 921-934 https://doi.org/10.1115/1.3167205
  16. Kalidindi, S.R., Bronkhorst, C.A. and Anand, L., 1992, 'Crystallographic Texture Evolution in Bulk Deformation Processing of FCC Metals,' J. Mech. Phys. Solids, Vol. 40, pp. 537-569 https://doi.org/10.1016/0022-5096(92)80003-9
  17. Cuitino, A.M. and Ortiz, M., 1992, 'Computational Modeling of Single-Crystals. Model,' Simul. Mater. Sci. Vol. 3, pp. 225-263
  18. Hutchinson, J.W., 1976, 'Bounds and Self-Consistent Estimates for Creep of Polycrystalline Materials,' Proc. R. Soc. Lond. A 348, pp. 101-127 https://doi.org/10.1098/rspa.1976.0027
  19. Peirce, D., Asaro, R.J. and Needleman, A., 1982, 'An analysis of Nonuniform and Localized Deformation in Ductile Single Crystals,' Acta Metall. Vol. 30, pp. 1087-1119 https://doi.org/10.1016/0001-6160(82)90005-0
  20. Y.S. Kim and S.Y. Won, 2003, 'Analysis of Forming Limits of Ductile Material Considering Damage Growth,' KSME(A). Vol. 27, pp.914-922

Cited by

  1. Finite Element Analysis for Rate-Independent Crystal Plasticity Model vol.33, pp.5, 2009, https://doi.org/10.3795/KSME-A.2009.33.5.447