Study on the Void Growth and Coalescence in F.C.C. Single Crystals

F.C.C. 단결정재에서 기공의 성장과 합체에 관한 연구

  • 하상렬 (포항공과대학교 대학원) ;
  • 김기태 (포항공과대학교 기계공학과)
  • Published : 2008.04.01


In this study, we investigate the deformation behavior of F.C.C. single crystals containing micro- or submicron-sized voids by using three dimensional finite element methods. The locally homogeneous constitutive model for the rate-dependent crystal plasticity is integrated based on the backward Euler method and implemented into a finite element program (ABAQUS) by means of user-defined subroutine (UMAT). The unit cell analysis has been investigated to study the effect of stress triaxiality and crystallographic orientations on the growth and coalescence of voids in F.C.C. single crystals.


Crystal Plasticity;Void Growth and Coalescence;Crystallographic Orientation;Stress Triaxiality


  1. Freund, L.B. and Suresh, S., 2003, Thin Film Materials, Cambridge University Press
  2. Kysar, J.W., Gan, Y.X. and Arzuza, G.M., 2005, 'Cylindrical Void in a Rigid-Ideally Plastic Single Crystal. Part I: Anisotropic Slip Line Theory Solution for Face-Centered Cubic Crystals,' Int. J. Plasticity, Vol. 21, pp. 1461-1657
  3. Gan, Y.X., Kysar, J.W. and Morse, T.L., 2006, 'Cylindrical Void in a Rigid-Ideally Plastic Single Crystal II: Experiments and Simulations,' Int. J. Plasticity, Vol. 22, pp. 39-72
  4. Rice, J.R. and Tracey, D.M., 1969, 'On the Ductile Enlargement of Voids in Triaxial Stress Fields,' J. Mech. Phys. Solids, Vol. 17, pp. 201-217
  5. Koplik, J. and Needleman, A., 1988, 'Void Growth and Coalescence in Porous Plastic Solids,' Int. J. Solids Struct., Vol. 24, No. 8, pp. 835-853
  6. Kuna, M. and Sun, D.Z., 1996, 'Three-Dimensional Cell Model Analyses of Void Growth in Ductile Materials,' Int. J. Fract., Vol. 81, pp. 235-258
  7. Pardoen, T. and Hutchinson, J., 2000, 'An Extended Model for Void Growth and Coalescence,' J. Mech. Phys. Solids, Vol. 48, pp. 2467-2512
  8. O'Regan, T.L., Quinn, D.F., Howe, M.A. and McHugh, P.E., 1997, 'Void Growth Simulations in Single Crystals,' Comput. Mech., Vol. 20, pp. 115-121
  9. Qi, W. and Bertram, A., 1999, 'Anistropic Continuum Damage Modeling for Single Crystals at High Temperature,' Int. J. Plasticity, Vol. 15, pp. 1197-1215
  10. Orsini, V.C. and Zikry, M.A., 2001, 'Void Growth and Interaction in Crystalline Materials,' Int. J. Plasticity, Vol. 17, pp. 1393-1417
  11. Schacht, T., Untermann, N. and Steck, E., 2003, 'The Influence of Crystallographic Orientation on the Deformation Behaviour of Single Crystals Containing Microvoids,' Int. J. Plasticity, Vol. 19, pp. 1605-1626
  12. Horstemeyer, M.F. and Ramaswamy, S., 2000, 'On Factors Affecting Localization and Void Growth in Ductile Metals: a Parametric Study,' Int. J. Damage Mech., Vol. 9, pp. 5-28
  13. Hibbitt, Karlsson, Sorensen, 2006, Abaqus User's Manual, version 6.5
  14. Hill, R. and Rice, J.R., 1972, 'Constitutive Analysis of Elastic.Plastic Crystals at Arbitrary Strain,' J. Mech. Phys. Solids, Vol. 20, pp. 401-413
  15. Asaro, R.J., 1983. Crystal Plasticity, J. Appl. Mech., Vol. 50, pp. 921-934
  16. Kalidindi, S.R., Bronkhorst, C.A. and Anand, L., 1992, 'Crystallographic Texture Evolution in Bulk Deformation Processing of FCC Metals,' J. Mech. Phys. Solids, Vol. 40, pp. 537-569
  17. Cuitino, A.M. and Ortiz, M., 1992, 'Computational Modeling of Single-Crystals. Model,' Simul. Mater. Sci. Vol. 3, pp. 225-263
  18. Hutchinson, J.W., 1976, 'Bounds and Self-Consistent Estimates for Creep of Polycrystalline Materials,' Proc. R. Soc. Lond. A 348, pp. 101-127
  19. Peirce, D., Asaro, R.J. and Needleman, A., 1982, 'An analysis of Nonuniform and Localized Deformation in Ductile Single Crystals,' Acta Metall. Vol. 30, pp. 1087-1119
  20. Y.S. Kim and S.Y. Won, 2003, 'Analysis of Forming Limits of Ductile Material Considering Damage Growth,' KSME(A). Vol. 27, pp.914-922

Cited by

  1. Finite Element Analysis for Rate-Independent Crystal Plasticity Model vol.33, pp.5, 2009,